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ABSTRACT

Real-Time Beamformer Development and Analysis of Weak Signal Detection with 
Interference Mitigation for Phased-Array Feed Radio Astronomy

James Michael Brady
Department of Electrical and Computer Engineering, BYU

Master of Science

In recent years, the Brigham Young University (BYU) Radio Astronomy Systems
group has developed phased-array feeds and the data acquisition processing systems nec-
essary to perform radio astronomy observations. This thesis describes the development
and testing of a real-time digital beamforming system that reduces both the time required
to process phased-array feed data and the disk space used to record this data compared
to post-processing beamforming systems. A real-data experiment is also discussed in this
thesis, which focuses on some of the data post-processing required for one of BYU’s data
acquisition systems.

Radio-frequency interference mitigation techniques for phased-array feed radio as-
tronomy have been studied for several years, but the effect that these techniques have on
weak-signal detection is not well understood. This thesis provides analysis of a simulated
weak-source observation for the Green Bank 20-meter telescope and BYU 19 element phased-
array feed with radio-frequency interference present. Interference mitigation techniques are
shown to reduce the detectability of weak sources compared with the no interference case,
but it is also shown that a weak source can be detected that would otherwise be masked by
interference.

Keywords: radio astronomy, phased-array feeds, radio-frequency interference, real-time beam-
forming, digital signal processing, weak source detection
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Chapter 1

Introduction

For thousands of years, the heavens have been a source of mystery and curiosity. The

Sun, Moon and stars were viewed as sources of power, diviners of the future, and echos of the

past. More recently, our desire to understand the universe has driven new technology and

pulled us into the future. While we reach out to touch moons, planets and even comets, our

reach is limited by how fast we can travel. To understand the larger universe outside of our

reach, we try to decode the information that the universe sends our way. This information

is mostly sent in the form of electromagnetic (EM) radiation. EM radiation varies in energy

(which is directly proportional to frequency) from the lowest frequency radio-waves through

the visible spectrum and up to the highest energy gamma-rays.

While the radio telescopes used to detect these signals are very sensitive, scanning the

sky to find new and interesting astronomical phenomena (such as pulsars [1], fast radio bursts

[2], and neutral hydrogen [3]) can take a very long time. Additionally, the radio frequency

spectrum is getting more crowded, and some interesting astronomical phenomena do not

appear in frequency bands protected by the FCC [4]. Solutions to both of these problems

are being addressed by the use of phased-array feeds (PAFs). A PAF can increase the

field of view (FOV) of a telescope and allow new opportunities to apply signal processing

algorithms which can mitigate radio-frequency interferance (RFI). In this thesis we will

discuss signal processing instrumentation for PAFs (specifially a real-time beamformer) and

a simulation of PAF radio astronomy in the presence of RFI to determine if interference

mitigation techniques allow us to detect weak astronomical sources.

1
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1.1 Radio Astronomy

Until the early 1900’s, we could only observe visible light from the heavens, and our

understanding of the universe was limited to the phenomena we could see with our eyes

and aided by optical telescopes. Ever since Karl Jansky first discovered radio-waves coming

from the Milky Way [5], we have been able to observe a much more interesting universe (see

Figure 1.1). While the technologies used to view the visible universe has progressed over

millenia from simply using our eyes up to the most advanced and largest optical telescopes

used today, radio astronomy technology has advanced dramatically in just the past century.

The first radio telescopes were only able to see very bright sources, such as Cassiopeia A

and Cygnus A (both of which are used as calibration sources because they are so bright) [6].

The most sensitive telescopes today have observed objects twenty million times weaker than

those first sources discovered [7]. Radio astronomy lets us see into the invisible universe,

including black holes, pulsars, quasars and neutral hydrogen clouds, which are just a few of

the many phenomena scientist now study using radio telescopes.

1.2 Radio Astronomy Systems

There are two major classifications for radio telescopes: single-dish telescopes and

interferometric imaging array telescopes. A single-dish radio telescope generally consists

of three major components: a reflector dish, a feed antenna and a receiver. Examples

include the Robert C. Byrd Green Bank Telescope (GBT) [9], the Arecibo observatory [10],

and the Effelsberg 100-m radio telescope [11]. The dish collects EM radiation and focuses

it onto the feed where a receiver system amplifies the signals, processes, and records them.

Interferometric array telescopes are a collection of many single-dish telescopes with relatively

wide separation–such as the Very Large Array (VLA) in New Mexico [12] and the Atacama

Large Millimeter Array (ALMA) in Chile [13]–or many dish-less aperture array antennas–

such as the Low-Frequency Array (LOFAR) based in the Netherlands [14] and the Murchison

Widefield Array (MWA) in Australia [15].

Very large reflector dishes, or arrays of smaller dishes, have the advantage of collecting

more radiation energy, which allows them to be more sensitive to weak signals. However, even

the largest telescopes require highly sensitive receiver systems to accurately record the signals

2
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Figure 1.1: By observing different EM wavelengths, more information can be gathered from
the supernova remnant Cassiopeia A. There is not much left of this star in the visible spectrum
(top right), but the X-ray and radio images (top and bottom left) show the stellar matter
expelled during the explosion. The tiny central spot visible in both the X-ray and radio images
is possibly a neutron star or a black hole [8]. Image credits: NASA/CXC/SAO, MDM/R.
Fesen, and NRAO/AUI/NFS

that are received. These receiver systems have advanced from Jansky’s analog pen-and-

paper system to digital systems built using high speed analog-to-digital converters (ADCs),

field programmable gate arrays (FPGAs), and computers. As we improve these systems,

astronomers can observe more of the universe by collecting more data at higher speeds,

observing over wider bandwidths, and by applying advanced digital array signal processing

techniques and algorithms. This thesis will focus primarily on single-dish instruments, but

the principles are also applicable to interferometric imaging arrays.

1.3 Phased-Array Feeds

Most traditional single-dish radio telescopes use a single antenna. A phased-array

feed (PAF) is built by combining many antennas into a single feed at the focus of the dish.

3
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An array processing technique known as beamforming can be used with a PAF to digitally

steer the telescope. A beam can be formed by generating a linear combination of signals from

all of the array elements. This beam can be steered across a wider field of view (compared

to a single horn feed) by adjusting the coefficients of the linear combination. This technique

provides an opportunity to improve the amount of sky a single telescope can see at once.

This thesis will focus primarily on telescopes with phased array feeds.

1.4 RFI Mitigation

Radio-frequency interference (RFI) is a problem for radio astronomers. Weak signals

from space can easily be masked by other sources of EM radiation. Common sources of

RFI include artificial satellites such as GPS or GLONASS, aircraft radar systems, and even

microwave ovens [16]. There are a number of methods for reducing the effect of RFI on an

observation. For example, using a PAF, RFI can be canceled by changing the shape of the

beam to place a null at the location of the RFI. RFI mitigation techniques could prove to

make RFI corrupted data usable, whereas now it is generally discarded.

1.5 Related Work

This thesis discusses the development and testing of a radio astronomy receiver sys-

tem built using an FPGA-based hardware platform. FPGA-based spectrometers has been

developed for use on both single-dish telescopes [17], and interferometric array telescopes

[18]. FPGA-based correlators are also being developed and used for phased-array feed tele-

scopes, both single-dish [19], and interferometric arrays [20] [21] [22]. There are also hybrid

correlator systems that utilize both FPGAs and graphics processing units (GPUs) [23].

Phased-array feeds have been proposed for use in radio astronomy and continue to

be developed. These systems include the 112 element APERTIF array for the Westerbork

Synthesis Radio Telescope [24], the 96 element dual-pol ASKAP PAF [25], the fully cryogenic

19 element dual-pol Cornell PAF [26], the 19 element dual-pol NRAO/BYU PAF [27], and

the 217 element PAF for the FAST telescope currently under construction [28].

Standard array processing techniques [29] can be applied to radio astronomy interfer-

ometry [30]. The beamforming technique was proposed in [31] and has been applied to PAF

4
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radio astronomy [32] [33] [34] with demonstration of these techniques described in [35] [36].

Figures of merit for beamforming arrays are discussed in [37]. Radio-frequency interference

techniques for PAF radio astronomy are discussed in [38] [39] and the performance of these

techniques are discussed in [40] [41]. Improvements to some RFI mitigation techniques are

given in [42] [43]. Oblique subspace projection (an RFI mitigation technique discussed in

this thesis) [44] is based on the work of Behrens and Scharf [45].

1.6 Problem Statement

Phased-array feeds show significant promise for radio astronomy, and efforts continue

to explore their performance. However, the performance increases associate with PAF radio

astronomy (such as an increased field of view) do not come for free. As the number of

elements and bandwidth requirements of a PAF increase, the required signal processing

becomes more time consuming and difficult to implement. RFI mitigation techniques using

PAFs show significant promise in their ability to cancel incoming interference that may mask

a desired signal. However, the effect of these techniques on the full PAF-receiver system is

not well known. In this thesis I describe an FPGA-based solution for real-time beamforming

of a 64-element PAF with a bandwidth of 25 MHz. The effects of RFI mitigation on a typical

radio astronomy observation are also explored in this thesis.

1.7 Thesis Contributions

The author’s contributions in this thesis are listed below:

• Designed an FPGA-based FFT which has been used in multiple BYU radio astronomy

receiver systems.

• Improved a previous student’s real-time FPGA-based beamformer design, including

extending it to multiple simultaneous beams.

• Incorporated the improved beamformer into a real-time digital receiver system capable

of steering seven independent beams.

• Generated software to manage real-time data from the beamformer.

5



www.manaraa.com

• Incorporated another university’s real-time correlator into a real-time interference can-

cellation system based on the real-time beamformer.

• Generated software to implement an RFI mitigation algorithm in the correlator-beamformer

interference cancellation system.

• Tested the validity of data gathered during an experiment at the Arecibo observatory.

• Generated a mosaic image using data gathered during the Arecibo experiment.

• Simulated a weak source observation of the Green Bank 20 meter dish in the presence

of RFI.

• Studied the effects of RFI mitigation techniques on a weak source observation and

showed that RFI mitigation techniques can allow weak sourced to be detected even in

the presence of RFI.

• Provided a recommendation as to when an observation should be attempted with RFI

present.

• Provided a recommendation to understand how well RFI mitigation techniques are

preforming for long integration observations.

1.8 Thesis Outline

Chapter 2 discusses the theory behind radio astronomy receivers, PAFs, beamforming

and RFI mitigation using subspace projection. Chapter 3 discusses the design and implemen-

tation of a real-time beamformer and real-time interference cancellation system. Chapter 4

includes the description of and results from a real data experiment at the Aricebo telescope.

Chapter 5 discusses a study of weak source detection using a PAF in the presence of RFI

and the effects that RFI mitigation techniques have on the receivers stability and sensitivity.

Chapter 6 presents conclusions and recommendations based on the material covered in the

previous chapters. Appendix A contains detailed instructions on the software that is used

to operate the systems described in Chapter 3 and Appendix B describes an improvement

to the correlator used in Chapter 4.
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Chapter 2

Background

To help the reader gain a greater understanding of phased-array feed radio astron-

omy, we provide in this chapter a description of the hardware systems, signal processing,

algorithms and theory that will be utilized in the remainder of this thesis. Section 2.1 dis-

cusses the hardware platforms used in this thesis and the software libraries and tools used

to develop systems using those hardware platforms. These tools were developed by a col-

laborative research group known as the Collaboration for Astronomy Signal Processing and

Electronics Research, or CASPER. Section 2.2 introduces that theory and algorithms that

are used for PAF signal processing, and Section 2.3 describes how weak astronomical signals

can be detected.

2.1 CASPER

The Collaboration for Astronomy Signal Processing and Electronics Research (CASPER)

is a worldwide group that work to provide open-source hardware, software and firmware to

simplify the process of designing custom radio astronomy systems. Based at the Univer-

sity of California at Berkeley, this collaborative group includes members from laboratories

and observatories such as NRAO, CSIRO, SKA-SA as well as many universities and other

institutions.

Because many radio astronomy systems follow the same basic functional architecture

design, CASPER works to generate basic building blocks that can be used to build a fully

operational scientific instrument. These building blocks include the hardware platform with

which the digital design will be implemented, IP cores that can be used to design the digital

systems, and the software needed to compile these designs [46].
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The CASPER hardware platforms used for this thesis include the ROACH (recon-

figurable open architecture computing hardware) processing board and it’s successor, the

ROACH-2. The ROACH board is built around a Xilinx Virtex-5 series FPGA and also

houses a number of FPGA interfaces and peripherals along with a CPU and CPU interfaces.

The ROACH-2 includes a Virtex-6 series FPGA and more high-speed I/O interfaces than

the ROACH.

Firmware developed by CASPER provide IP cores that perform many functions es-

sential to radio astronomy DSP. These include the fast Fourier transfrom (FFT), analog-

to-digital converter (ADC) interfaces, 10 Gigabit Ethernet (10GbE), and XAUI tranceivers

(the 10 Gigabit Attachment Unit Interface XAUI is used to extend the interface between the

MAC and PHY layer of 10GbE [47]). These cores are built as drop-in Simulink blocks, color

coded to signify their purpose: “yellow blocks” are I/O interfaces (such as ADCs, shared

registers and BRAMs) and “green blocks” implement algorithms (such as the FFT). Chapter

3 of this thesis describes a digital back-end system for a radio astronomy system that was

designed using the tools provided by the CASPER group.

2.2 PAF Signal Processing

Using a phased array introduces additional complexity into the radio astronomy sys-

tem. This complexity can be utilized to give a system greater flexibility. With a traditional

horn feed, the beam shape is fixed and the radio telescope can only observe a signal that it is

physically pointing at. A PAF allows us to electronically steer the beam, or multiple beams

simultaneous beams, and control their shape. This greater flexibility allows astronomers

to observe signals arriving from multiple directions simultaneously and to adjust the beam

size, shape, and null placement to increase survey speed and perform spatial cancellation of

interference. This section will discuss the theory and algorithms required to perform this

digitally.
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2.2.1 PAF Signal model

Assuming a narrowband M element PAF, the complex baseband data vector at time

sample n is given as

x[n] = vs[n] + η[n], (2.1)

where s[n] is the signal of interest (SOI), v is the array response vector to a point source

in the direction of the SOI, and η[n] is the total system noise seen at the array. For an

M element array, x[n] is an M × 1 complex vector. Assuming the signals s[n] and η[n] are

independent zero mean wide-sense stationary random processes, the array covariance matrix

is defined as

R = E
{

x[n]xH [n]
}

(2.2)

= E {vs[n] + η[n]}

= Rs +Rη,

where E {•} denotes the expected value and R is M ×M . If we also assume the SOI is a

point source with a power of σ2
s , we see that

Rs = σ2
svv

H . (2.3)

While Equation 2.2 represents the true array covariance matrix, we can only estimate

this matrix during an observation. An estimate is obtained by integrating over some short

time integration (STI) window of length N

R̂ =
1

L

N−1
∑

n=0

x[n]xH [n] =
1

L
XXH , (2.4)

where X is the M ×N data matrix, with one column per sample, for an N -sample long STI

data window.
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2.2.2 Beamforming

As stated before, linear combinations of PAF element signals can be used to adjust

the array’s response to a signal. This process is called beamforming, and pattern response is

controlled by the vector w, called the beamformer coefficients or weights. The beamformed

signal is given by [31]

y[n] = wHx[n]. (2.5)

We refer to this form as a “time-domain beamformer”. A “post-correlation beamformer” can

also be used to estimate the beamformed power within some STI by applying the beamformer

weights to the estimated array covariance matrix

|ŷ|2 = 1

L
YYH (2.6)

=
1

L
(wHX)(wHX)H

=
1

L
wHXXHw

= wHR̂w.

Both time-domain and post-correlation beamforming will be used in this thesis.

2.2.3 Calibration

One of the challenges of beamforming is designing an effective set of beamformer

weights. There are many ways to generate beamformer weights, and each method aims to

achieve a different goal. Weights can be calculated to constrain the beamformer output

variance using a linearly-constrained minimum variance (LCMV) beamformer [48], to min-

imize the computation required to generate the weights, as in the conjugate field match

(CFM) beamformer [49], or to maximize SNR as in the max-SNR beamformer [50]. Most of

these beamformers require knowledge of the array response vector v(Ω), in every direction Ω

where one wishes to steer the beampattern main lobe, and in every direction where sidelobe
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or mainlobe respone constraints are the be placed. A PAF calibration procedure has been

proposed in [32] to estimate these vectors.

To estimate the array response vector v for some direction Ωk, the telescope is steered

to this angular separation relative to a calibration source (common calibration sources include

strong point-sources such as Cassiopeia A or Cygnus A). A signal plus noise covariance matrix

R̂i is obtained at this location. The dish is then steered to another location away from the

calibration source to obtain a noise-only covariance matrix R̂n. The array response vector

is estimated as

v̂ = R̂numax, (2.7)

where umax is given by the dominant solution to the generalized eigenvalue problem

R̂numax = λmaxR̂numax. (2.8)

While a single array response vector is adequate to calculate a set of beamformer

weights, many sets of weights are often desired to allow the PAF to steer to multiple locations.

The calibration procedure is repeated for many directions in a grid pattern. These calibration

girds are often vary large to thoroughly sample the field of view (FOV) of the feed. Chapter

4 describes an experiment where calibration grids of 225 and 961 different pointings were

acquired in square grids of 15 and 31 rows and columns respectively.

This thesis is primarily concerned with maximum-SNR beamforming. This beam-

former is defined as [33]

wmaxSNR,i = argmax
w

wHRsw

wHRnw
, (2.9)

which is solved using the generalized eigenvector problem

R̂s,iwmaxSNR,i = λmaxR̂nwmaxSNR. (2.10)

2.2.4 Radio Camera Imaging

The idea for a “radio camera” was put forth by Steinberg [51] and involves using an

array of antennas to gather more information about an object than a single antenna is able
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to. This idea has been adapted and used with PAFs to generate images of astronomical

objects by forming a beam at each calibration grid pointing, and treating the power in each

beam as the image pixel intensity [52][53].

Once a calibration grid has been obtained and beamformer weights have been cal-

culated for each pointing, a radio camera image can be produced by applying all sets of

beamformer weights, wk, to the data collected from a single dish pointing. In so doing,

images of astronomical objects can be formed much more quickly as the dish does not need

to be physically steered to and integrate the received signal at each on-sky pixel location.

However, care must be taken to ensure that the pixels generated from the radio camera are

intelligently spaced within the PAF’s FOV. A densely sampled calibration grid may not give

better resolution than a calibration grid with greater separation between dish pointings (e.g.

pointings separated by the half-power beam width (HPBW)), and would require much more

computation to form the image in addition to the extra telescope time required to generate

the calibration grid.

2.2.5 RFI Mitigation

Radio-frequency interference is EM radiation from sources other than the cosmic

objects the astronomer is interested in. This interference can often mask the signals the

astronomer is interested in. Common methods of reducing the impact of RFI are to excise

the frequency band that is corrupted by RFI and discard it, or to discard (called blanking)

corrupted time samples x[n] for intermittent RFI. PAF signal processing provides additional

methods of RFI mitigation that do not necessarily require a loss of data. Subspace projection

is a method that relies on projecting the received signal onto a vector subspace that does

not contain the interference subspace. Suppose the received signal is of the form

x[n] = vsxs[n] + vixi[n] + η[n], (2.11)

where xs[n], xi, and η[n] are the random processes representing the source, interference and

noise amplitudes and vs and vi are the array response vectors to the signal and interference.

A projection matrix P applied to the received signal can cancel the interference if P ⊥ vi
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such that Pvi = 0

Px[n] = Pvsxs[n] +Pvixi[n] +Pη[n] (2.12)

Px[n] = Pvsxs[n] +Pη[n].

This projection matrix can be used to modify the received signal x[n], the estimated

correlation matrix R̂ or the beamformer weights w. This can be seen by applying the

projection matrix to the received signal in equations (2.5) and (2.6) and using some matrix

algebra to rearrange the equations slightly:

y[n] = wHPx[n]

= wHxp[n],

y[n] = wHPx[n]

= (PHw)Hx[n]

= wH
p x[n],

(2.13)

|ŷ|2 = 1

L
YYH

=
1

L
(wHPX)(wHPX)H

=
1

L
wH(PXXHPH)w

= wH(PR̂PH)w

= wHR̂pw,

|ŷ|2 = 1

L
YYH

=
1

L
(wHPX)(wHPX)H

=
1

L
wH(PXXHPH)w

= (wHP)R̂(PHw)

= wH
p R̂wp,

(2.14)

where xp[n] = Px[n], wp = PHw, and R̂p = PR̂PH .

This general approach is referred to as “subspace projection” interference canceling.

It is preferred over variance minimization methods such as MVDR [29] in radio astronomy

because it is “zero forcing,” and produces very deep nulls. This is important because the

SNR level may be many tens of dB below zero. The null must drive the RFI well below the

noise floor [38].

Orthogonal Projection

The projection matrix P can be estimated using principal component analysis (PCA)

[38]. Assuming the interfering signal power is much greater than that of the SOI, the subspace
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spanned by Q interferers is estimated by finding the set of eigenvectors that correspond to

the Q dominant eigenvalues of the total received covariance matrix R. The eigenvalue

decomposition of R is given by

R = UΛU, (2.15)

where U is the M ×M unitary matrix with eigenvectors of R as its columns and Λ is the

M ×M matrix whose diagonal entries are the eigenvalues of R. The orthogonal projection

matrix P is given by [38]

P = I−UqUq
H , (2.16)

where I is the M × M identity matrix and Uq is the M × Q matrix comprised of the Q

dominant eigenvectors of the matrix U. Methods such as cross-subspace [39] projection

include tracking the interference with an auxiliary antenna to produce a better estimate of

the interference subspace.

Rarely is the interference subspace truly orthogonal to the signal subspace. Using

the orthogonal projection given by (2.16) can introduce a bias into the received signal [40].

This bias should be corrected in order to preserve the true nature of the SOI. This bias

correction can also preserve, on average, the beampattern sidelobe structure while tracking

moving interferers [54].

Oblique Projection

If instead of an orthogonal projection we use an oblique projection, the signal sub-

space can be preserved. In order to perform an oblique projection, both the signal and

interference subspaces must be known. The signal subspace can be produced using the cali-

bration technique described in 2.2.3, and the interference subspace is estimated using PCA.

The oblique projection matrix is formed by setting its range to be the signal subspace and

its kernel to be the interference subspace. The oblique projection matrix is given by [44]

Pobl = Ss(S
H
s P

⊥Ss)
−1SH

s P
⊥, (2.17)
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where Ss is the signal subspace and P⊥ is the orthogonal projection matrix described in

section 2.2.5. In the case of a single point source SOI, Ss =
vs

(vH
s Vs)1/2

. This equation can be

viewed as a correction which undoes the damage to the SOI subspace done by an orthogonal

projection when the two subspaces are not actually orthogonal.

2.2.6 Performance Metrics

The primary metric of concern in this thesis is the system noise temperature, Tsys.

This is given by [55]

Tsys = Tiso
wHRnw

wH(Riso +Rloss)w
, (2.18)

where Tsys and Tiso are the system temperature and isotropic noise environment tempera-

ture, respectively. Riso is the covariance matrix of the isolated array response to spatially

isotropic noise, and Rloss is due to antenna resistive losses. Tsys is one of the main factors to

consider when determining how weak a signal the telescope can detect (see section 2.3). For

observations with interference, the contribution to Tsys from RFI and the effects of subspace

projection on the system noise can be calculated by recognizing that Rn is made up of the

RFI covariance matrix Ri and the noise covariance matrix Rnoise.

Tsys = Tiso
wHRnw

wH(Riso +Rloss)w
(2.19)

= Tiso
wH(Rnoise +Ri)w

wH(Riso +Rloss)w

Tsys,rfi + Tsys,noise = Tiso
wHRiw

wH(Riso +Rloss)w
+ Tiso

wHRnoisew

wH(Riso +Rloss)w
,

where Tsys,rfi and Tsys,noise are the contributions to Tsys from the interference and noise re-

spectively. To calculate the effect of subspace projection, either the beamformer weights

w or the covariance matrices Ri,Rnoise can be replaced by their post-subspace projection

counterparts wp,Rp,i, and Rp,noise respectively.

2.3 Weak Source Detection

In radio astronomy the SOI signal levels are typically many tens of dB below the

noise floor corresponding to Tsys, even with the largest and most sensitive instruments. One
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technique used to detect these weak sources is an on-off subtraction. To estimate the power in

a weak source using a post-correlation beamformer, we require the signal correlation matrix

Rs. We first observe the SOI to obtain our “on pointing”

Ron = Rs +Rn. (2.20)

We then steer the telescope to a region of sky with no signal to collect an “off pointing”

Roff = Rn. (2.21)

Subtracting the two will give us an estimate of the signal covariance from which we can

determine the power received by the weak source

R̂s = Ron −Roff . (2.22)

This on-off subtraction can be performed for both broadband and narrow-band sig-

nals. However, for narrowband signals masked by broadband noise, only a single “on point-

ing” is necessary. The frequency bands outside the SOI bandwidth are used to form a virtual

“off pointing” reference.

In practice we use instead R̂on and R̂off which are sample estimates over some inte-

gration window of length τ . In the next section, the relationship between τ , Tsys, and the

limit of detectable signal power will be discussed.

2.3.1 Radiometer Stability

The receiver system for many radio astronomy instruments consists of five main com-

ponents:

• A low-noise amplifier (LNA). This amplifies the weak signals received by the antenna to

a more appropriate level for further processing. Because the noise figure of a cascaded

system is most heavily influenced by the first stage, this amplifier is usually cooled to

extremely low temperatures to reduce thermal noise.
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• A mixer to bring the RF frequency band of interest down to a more convenient inter-

mediate frequency (IF) band.

• An IF amplifier and filter to further groom the signal to the desired IF band.

• A square law detector which outputs a voltage proportional to the input power.

• An integrator which averages the detector output over some time interval τ .

The receiver system used to observe weak astronomical signals is a major factor in

determining how weak of a signal we are able to detect. Each component in the receiver

chain adds additional noise to the system [56], which can mask a weak SOI. Other sources

of noise also effect to the overall system temperature Tsys. These include sky noise, spillover

noise and losses in antenna, cables and other components [55] [32].

In order to detect a weak signal that produces an increase in antenna temperature of

Ts, the variation of T̂sys (the estimated Tsys over some long-term integration (LTI) window)

must be sufficiently small so that we do not confuse a sudden increase in thermal noise with

the SOI. The detrimental effects of a high Tsys can be overcome by sufficient integration,

assuming wide-sense stationary statistics for xs[n], xi[n] and η[n]. As N independent voltage

samples of a signal with bandwidth β are averaged over a time τ , the variance of the voltage

estimate is reduced by the factor N = βτ . This leads to a relationship between the standard

deviation of our estimate of Tsys (∆Tsys), the true Tsys and the amount of integration [57]

∆Tsys

Tsys

=
1√
βτ

. (2.23)

This equation assumes that there is no time-dependent gain variation of the receiver

system. In the case that this is not true, additional variation is introduced to Tsys. Because

any gain variation is independent of the noise variation, the two can be combined into

∆T =
√

∆T 2
N +∆T 2

G, (2.24)

where ∆T , ∆TN , and ∆TG are the total uncertainty in the system, the uncertainty due to

noise, and the uncertainty due to gain variations respectively [56].
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In order to detect a SOI with power (expressed in units of kelvin) Ts, we require that

that ∆T < Ts. This is generally extended to ensure a 5σ detection [58]

Ts > 5
√

∆T 2
N +∆T 2

G. (2.25)

Allan Deviation

To reduce the variance of the sample estimation error, the received signals are in-

tegrated for some LTI window. This reduction relies on the assumption that the system

temperature is dominated by Gaussian white noise. If the system temperature begins to

be dominated by some other factor, such as time-varying gain, our ability to reduce sample

estimation error is diminished. To determine what factor is dominant in equation 2.24, the

Allan deviation method can be applied to the sampled data. This method has been used

to measure stability of atomic clocks [59], and can also been applied to the stability of mi-

crowave radiometers. The Allan deviation can be calculated for some sampling period τ0

with N measurements of Ti [60]

σy(τ0) =

√

∑N−1
i=1 (Ti+1 − Ti)2

2(N − 1)
. (2.26)

To calculate the Allan deviation for various LTI lengths τ , n adjacent values are averaged

so that τ = nτ0, giving

σy(τ0) =

√

∑N−2n+1
i=1 (Ti+2n − 2Ti+n + Ti)2

2(τ 2(N − 2n+ 1)
. (2.27)

A log-log plot of the Allan deviation versus LTI length provides information as to what

type of noise is dominating for various integration lengths. The Allan deviation is defined so

that Gaussian white noise will produce a slope of -0.5. flicker noise, random-walk noise, and

steady drift will have a slope of 0, 0.5 and 1 respectively. The “Allan time,” defined as the

minimum point of the Allan variance, provides the maximum integration length that can be

used while still receiving the benefits of integration.
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Chapter 3

Development of the x64 Real-Time Beamformer

Some of the drawbacks of phased array feed (PAF) radio astronomy include the extra

data load that comes with increasing the number of antenna elements, and the extra com-

putational burden that comes with array signal processing. The x64 Real-Time Beamformer

(xRTB) performs real-time beamforming which, when compared to post-correlation beam-

forming, has two major benefits: reduction of both computational burden and the amount

of data to be stored on disk.

The xRTB was designed for the ROACH platform. The ROACH board is a Virtex-

5 FPGA system that was designed by the UC Berkeley CASPER group to be used for

high speed radio astronomy signal processing. Each ROACH board consists of a Virtex-5

FPGA and a PowerPC, along with numerous I/O interfaces including four 10Gb Ethernet

and two Z-DOK connectors. Since the xRTB firmware was designed, a new ROACH-2 has

been developed that includes a Virtex-6 FPGA and additional 10Gb Ethernet capacity. To

interface with the ROACH’s PowerPC, another computer is used as a host and communicates

through a 1 GbE connection. This host computer can program the FPGA and read from

and write to memory on board the ROACH that is shared with the FPGA. This shared

memory can be used to monitor and control the FPGA and to transfer data between the

FPGA and the host computer.

The xRTB (Figure 3.2(a)) generates beamformed data for up to 7 simultaneous

beams. Using a 64-channel, 12-bit ADC (64ADCx64-12, developed by Rick Raffanti) the

xRTB can operate using up to 64 channels sampled at 50 Megasamples per second (Msps).

The beamformed data is saved to the host PC in a binary .mat file, and Matlab can be used

to view the data in real time or to review the data at a later time. The xRTB can also be

used as part of a Real Time Interference Cancellation (RTIC) system (Figure 3.2(b)). This

19



www.manaraa.com

system requires multiple ROACH boards running simultaneously. The RTIC system uses

the xRTB (one ROACH board) and the Real Time Correlator (two ROACH boards) along

with MATLAB and Python scripts that perform the subspace projection and display output

data.

(a) Inside the ROACH enclosure. (b) Inside the ROACH-2 enclosure.

Figure 3.1: Both the ROACH and ROACH-2 boards were designed for high-speed FPGA-
based radio astronomy signal processing. This ROACH board (a) is configured for the xRTB
with a 64-channel 50 Msps ADC connected to the two Z-DOK connectors. This ROACH-2 (b)
has two 16/8/4-channel 250/500/1000 Msps ADCs on the right and two 4x10GbE cards on the
left.

(a) Block diagram of the xRTB system. (b) Block diagram of the RTIC system.

Figure 3.2: In both the xRTB system (a) and the RTIC system (b), the PAF elements
are connected to the receiver/downconverter boards and then sent to the ROACH boards.
The xRTB uses a single ROACH connected to a PC via 1 GbE. The RTIC system uses three
ROACHs, two of which communicate using, a 10 Gb communication connection via XAUI.
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To operate the xRTB, the following steps are taken (in order):

• Calculate Beamformer weights for up to 7 beams

• Run the Beamformer using the generated weight files

• View the beamformed data

To operate the RTIC system, the following steps are taken (in order):

• Calculate initial Beamformer weights for 1 beam.

• Initialize F/X Engine.

• Initialize subspace projection function.

• Run the Beamformer.

• Start the Matlab function to view beamformed data.

• Using the F/X Engine, periodically save new correlation data.

See Appendix A for detailed operational notes.

3.1 xRTB Design

The xRTB was designed using a combination of VHDL and Simulink, and relies

heavily on the CASPER (Collaboration for Astronomy Signal Processing and Electronics

Research) toolflow. The CASPER toolflow includes a number of libraries and Simulink

blocks that have been designed and optimized for radio astronomy systems implemented

on the Virtex-based ROACH boards. These libraries include high-speed ADC and I/O

interfaces, efficient FFT implementations and polyphase filter banks. The CASPER toolflow

also includes the software necessary to communicate with the ROACH board from a host

PC through a 1Gb Ethernet link.

There are two major components in the xRTB design: the F-Engine and the B-Engine.

These two components perform the bulk of the computation and take up a majority of the

FPGA fabric. Four minor subsystems handle control logic, pre-beamforming data reduction,
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B-engine coefficient updating and the x64 ADC. The F-Engine, minor subsystems, and

control software were designed by this author, using other CASPER designs as a framework

for the F-Engine. A preliminary beamformer was designed by BYU student Megan Fuller.

This was then expanded, incorporated into the xRTB system, and tested by this author. A

description of the development and testing of these components follows.

3.1.1 xRTB F-Engine:

The purpose of the F-Engine is to frequency channelize the data coming in on each of

the 64 ADC inputs. With an ADC sample rate of 50 MHz and an FFT length of 512, this F-

Engine produces 256 frequency channels with a bandwidth of 97.7 kHz each. This frequency

channelized data is then passed to a broadband beamformer contained in the B-Engine.

The F-Engine for the xRTB was designed using the polyphase filter bank (PFB)

technique (see [61], [62]) to reduce spectral leakage. Conceptually, this techniques involves

passing a signal through a bank of low-pass polyphase filters which are frequency shifted ap-

propriately by an FFT [63]. This produces many bandpass filters that perform the frequency

channelization and results in much less spectral leakage than a standard FFT alone. To im-

plement this technique on the ROACH hardware, a number of time windows are buffered

up, filtered, and added point-by-point to produce a single filtered window of data that is

then passed to the FFT [61]. The two downsides to this technique are the extra time needed

to fill the buffers and the extra FPGA resources consumed by the PFB. Implemented on an

FPGA, the PFB technique generally uses 50% more resources than a standard FFT [61].

3.1.2 xRTB B-Engine:

The B-Engine performs the real-time beamforming and the spectral power accumu-

lation. The resulting beamformed spectra are stored in a shared BRAM to be read by the

ROACH host PC.

At the heart of the B-Engine is a single 64 input beamformer. A block diagram of

this beamformer is shown in Figure 3.3. In comparing this block diagram to the beamformer

equation given in section 2.2.2

y[n] = wHx[n], (3.1)

22



www.manaraa.com

Figure 3.3: Block diagram of the B-Engine.

recall that a vector multiplication operation can be described as

ab =
∑

i

aibi. (3.2)

The block diagram shows the beamformer coefficients w (stored in memory within the

mem ctrl block) multiplied by the array data vector x[n] (in the complex multiplier block),

added together (in the block marked Σ), and passed to an accumulator (acc sm). Because

the frequency channelized data streams into the B-Engine one channel at a time, this single

narrowband beamformer can be used to beamform all frequency channels by simply chang-

ing the coefficients appropriately as each new frequency channel arrives at the input to the

beamformer.

The majority of the B-Engine was written in VHDL and contains two Xilinx IP

cores generated using Xilinx Core Generator. The main components of the B-Engine are

the compelx multiplier (from CoreGen), the memory control module (mem ctrl.vhdl) and
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Figure 3.4: ASM chart for the mem ctrl block.

the accumulation module (acc sm.vhdl). These components are all included in the VHDL

component named “beamformer”. This component is incorporated into the larger xRTB

design using a Simulink black box module which is surrounded by the requisite control logic.

The magnitude of the final complex output of the B-Engine is squared and added in an

accumulator. This accumulator periodically writes to a shared BRAM that can be read

from the host PC to retrieve the accumulated beamformed power spectral data.

The memory control module is the most complex part of the B-Engine. This module

controls the writing, storing, and reading of the beamformer coefficients. Its basic operation

is to cycle through each coefficient and send it to the complex multiplier. This requires a state
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Figure 3.5: Block diagram of the B-Engine partial beam accumulator.

machine to control coefficient BRAM read address and when the values stored in this BRAM

are sent to the multiplier. In addition to simply reading stored data, the memory control

module can update the coefficients stored in its BRAM. The coefficients to be written to this

BRAM are stored in a shared BRAM in the top-level Simulink xRTB model. Reading from

this BRAM and writing to the memory control module BRAM is controlled by the memory

control module state machine. The memory control module state machine is shown in the

ASM chart in Figure 3.4.

The accumulation module completes the summation started by the initial adder.

Because data from all antenna elements is not available to the B-Engine simultaneously, the

multiplier and adder are not able to calculate a beamformed output for all antenna elements

at once. Instead, they compute “partial beams” which are accumulated until the full beam

has been formed. When a full beam has been formed, the data is marked as valid and sent

out of the B-Engine to be accumulated in the top-level power accumulator. A block diagram

of the partial beam accumulator is shown in Figure 3.5.
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3.1.3 xRTB Minor subsystems:

The simplest minor subsystem is the x64 ADC. Because it is a CASPER library yellow

block, it only needs to be dropped into the simulink model and connected to the F-engine.

The control system is somewhat more complex. This system consists of a few 32-

bit shared registers that can be written to and read from by the host PC. These registers

are used to save parameters such as the accumulation length, the dynamic range selection

window, and input data for beamformer testing. One of these registers (named ‘ctrl’) is the

main control register that generates the synchronization pulse that keeps each of the other

subsystems running in lock-step with each other. This register also controls global and ADC

reset signals as well as the signals needed to update beamformer coefficients for each of the

seven beams.

The amount of data coming out the F-Engine is too much for the B-Engine to handle,

so it must be reduced. To reduce the amount of FPGA fabric required by the B-Engine,

the 36-bit complex output (18 bits real, 18 bits imaginary) of the F-Engine is reduced to an

8-bit (4 real, 4 imaginary) complex value. This reduction is done by rounding and slicing

each of the real and imaginary lines to 4 bits. To avoid introducing a bias into this rounded

output, half of the LSB is added before truncation [64]. This is done by slicing off the

desired 4-bit window plus the next least-significant bit and adding one. Then the LSB of

this intermediate value (the extra 5th bit) is dropped and the remaining 4-bit value is sent to

the B-Engine. While this slicing reduces the dynamic range of the beamformer, the FPGA

real-estate that is saved is critical for this design. The full 7-beam xRTB firmware occupies

more than 95% of the available Virtex-5 resources. Without this data reduction, even a

single-beam beamformer would not fit on the FPGA.

The most complicated subsystem is the mechanism to update the beamformer coeffi-

cients. To update the weights for one of the beams, the desired new coefficients are written

to a shared BRAM on the FPGA. This BRAM is then copied to the B-Engine’s coefficient

BRAM. When the control signal is given for one of the beamformers to update its coeffi-

cients, it transitions into its coefficient update state and begins a counter that cycles through

each of the beamformer coefficient addresses within its internal BRAM. Each address is sent

to the shared BRAM, and the value stored at that address is written to the beamformer’s
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internal BRAM at that same address. This process forms a feedback loop which needs to

be treated carefully if timing adjustments are made (such as adding or removing pipeline

registers).

3.2 Real-Time Interference Cancellation System Design

The x64 Real-Time Interference Cancellation System (RTIC) is built on the xRTB

and the 32-input real time correlator (xRTC), designed for use at the BEST-2 array in

Medicina, Italy [65]. This system uses three ROACH boards, one for the xRTB and two for

the real time correlator. In addition to this hardware, the host PC is needed to capture the

output correlations, calculate new beamformer weights and update the beamformer weights

on the xRTB. This extra work is done through a combination of MATLAB and Python

scripts. With this system, the xRTB can accumulate for as little as 0.1 seconds, with a delay

of 1 second between coefficient updates.

3.2.1 F/X Engine:

The real time correlator is built on the same FPGA platform as the xRTB. Two

ROACH boards are required, along with an x64 ADC. The first ROACH houses an F-Engine

similar to the xRTB (implementing a 2048-point FFT) and the second ROACH houses the

correlator (X-Engine) itself. Channelized data is sent from the first ROACH to be correlated

on the second ROACH through a 10GbE XAUI link. Correlated data is sent back to the

host PC through a 1GbE link to be saved on disk. For a very in-depth explanation of the

design and operation of this X-Engine, see [65].

3.2.2 Real-time Subspace Projection Software:

The F/X Engine control software handles saving the correlated data to the host PC.

The RTIC control software handles the RFI cancellation from this point on. A combination

of MATLAB and Python scripts are used to read the correlated data and perform subspace

projection, calculate updated beamformer weights and upload them to the xRTB, and read

beamformed data and plot the output spectra.
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This software is still firmly in the “proof of concept” phase, and as such there is still

some work to be done and a number of assumptions that have been made. The F/X Engine

control software currently does not run automatically; new correlation matrices must be

retrieved and saved to disk manually. There is no RFI detection performed, as it is assumed

that there is always a single RFI source. Also, the RFI is always assumed to be stronger

than the SOI; if this is not true, the subspace projection will try to cancel the SOI instead

of the RFI.

3.3 Development and Testing of the xRTB

The development of the xRTB was primarily shared between two student. BYU

student Megan Fuller designed, coded, and simulated the basic operation of the B-Engine

including the complex multiply and add, reading beamformer weights from memory, and

“partial beam” accumulation. This work was done as part of a senior team design project.

When this author took over the development effort, the full xRTB design had been started

but was in very early stages of development. In addition to designing the F-Engine, the

B-Engine itself was expanded to allow the beamformer coefficients to be updated during

operation and the summation and accumulation blocks were updated to fix overflow problems

associated with bit-growth. The B-Engine was replicated to allow seven simultaneous beams

to be formed and the requisite control logic for each beam was added. Because the FPGA

resource utilization for this design is so high and timing closure was difficult to achieve due

to routing, numerous minor changes (such as adding or removing pipeline registers) were

made to the design before a bitstream could be produced.

Testing of the xRTB was done both in simulation and in the lab. Tests for each

component of the beamformer were done in simulation (using a testbench written by Megan

Fuller) before the beamformer was integrated into the full xRTB system. The xRTB was

tested in hardware after the full design was completed and implemented on the ROACH

boards. Using tools like Xilinx’s ChipScope, the FPGA can be probed during operation to

verify the integrity of the signals and processing. A number of table-top tests were performed

to verify the operation of the xRTB using signal generators as a signal source. After the

control software was complete, the xRTB system was testing using a 19 element dual-pol
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PAF (the ‘ear’ dipole array described in [66]) mounted on the roof of the Clyde Engineering

Building at BYU with another single transmitting antenna used as a signal source (see Figure

3.6). The xRTB was slated to be tested at the Arecibo Observatory during the experiment

described in Chapter 4, but time constraints did not allow any substantial testing to be

accomplished. Other testing platforms are being sought, including the GBT, but time and

funding are currently limiting factors for a thorough real-data experiment using the xRTB.

(a) The 19 element PAF used to test the xRTB. (b) The roof setup for the xRTB tests.

Figure 3.6: To test the xRTB, a 19 element PAF (a) was mounted on the roof of the Clyde
Building. As a signal source, another antenna was mounted to the top of the large white
tower. This can be seen in (b) as the small brown square on the railing of the tower. The
transmitting antenna was moved to seven different locations to (mimicking the calibration
procedure described in section 2.2.3) so that multiple beams could be formed.
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Chapter 4

Experiment at the Arecibo Observatory

In July 2013, an experiment was conducted jointly by Cornell University, BYU, and

scientists at the Arecibo observatory to test a 19-element dual-pol PAF prototype on the

305 meter Arecibo telescope; the worlds largest. The PAF was designed and built by Cornell

University [26] and was coupled with the x64 Data Acquisition System (xDAQ) and xRTB

designed at BYU. The experiment was conducted to characterize the capability of the Cornell

PAF and as a first field test of the BYU digital back end.

4.1 Description of Experiment

During the experiment, a number of observations were conducted using the Cornell

PAF and the xDAQ. These included calibration grids, an on-off weak-source observation, an

extended source observation of the M87 radio galaxy and hot-cold observations using the

moon. The calibration grids were used to calculate beamformer weights for many directions

within the FOV, as described in section 2.2.3. The on-off weak-source observation consisted

of two dish pointings, one looking directly at the weak source, and the other looking at

blank sky, for 40 seconds each. With a good estimate of the noise, the weak source can be

detected by subtracting the estimated noise from the on-source observation, as described in

section 2.3. The M87 galaxy is too large to fit within a single beam of the PAF, so multiple

dish pointing were used to be able to generate an image of the entire object. This extended

source observation was done in much the same manner as the Cygnus X region observation

described in [32]. A hot-cold observation provides a measurement of two sources of known

temperature which can be used to determine the system noise temperature by utilizing the

Y-factor method [67] [52]. The moon was used to provide the hot load and blank sky was

used for the cold load.
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The xDAQ recorded frequency channelized data to disk which was later processed

to produce the final data products which included a sensitivity map of the PAF, far field

beam patterns and a radio camera image of the elliptical galaxy M87 [26]. Unfortunately,

due to time constraints, we were not able to test the xRTB in any meaningful way during

this experiment.

4.1.1 Hardware Description

This experiment included three major hardware components: the Cornell PAF, the

BYU analog receivers/downconverters and the BYU digital back-end. The Cornell PAF is

described in detail in [26].

The BYU analog recerver/downconverter system (seen in Figure 4.1(a))was designed

and built by graduate students Michael Elmer and Vikas Asthana [68] [34]. This system

consists of a number of 4-channel receiver cards that prepare the PAF inputs for the digital

back-end system. These cards take as input an L-Band signal, amplify and apply a bandpass

filter to select out the 1200-1800 MHz band of interest. This signal is then lower-sideband

down mixed, filtered, and amplified before being mixed again, amplified and bandpass fil-

tered. The output signal lies within the 25-50 MHz IF band.

The BYU digital back-end was designed and built using CASPER ROACH boards

with a 64-input 50 Msps ADC. As the IF band is from 25-50 MHz, the anti-aliasing filters

on the ADC boards were removed to allow sampling within the second Nyquist zone. The

BYU digital back-end includes both the xDAQ and the xRTB, although only one is generally

used at a time. A brief description of the xDAQ will be provided here, however the reader

is advised to read a detailed description in [41]. The xRTB is described in detail in Chapter

3 and will not be discussed further here.

x64 Data Acquisition System

The goal of the xDAQ is to sample the incoming IF band from the PAF, frequency

channelize that data and then record it to a disk for post processing. The xDAQ is based on

the same 64-input, 50 Msps ADC as the xRTB. Once the IF signal is sampled and digitized

onto the ROACH board, it is passed into an F-Engine similar to that used in the xRTB. The
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(a) BYU analog rack (b) BYU digital rack

(c) Cornell PAF

Figure 4.1: (a) The analog rack contains 16 4-channel receiver cards, local oscillators (LOs)
and the LO distribution network. (b) The digital rack contains three ROACH boards and two
ROACH servers. Two of the ROACH boards are hidden behind the 64-channel ADC input
panels (seen as four rows of 16 SMA RF connectors). (c) The Cornell cryo-PAF installed in
the Arecibo feed dome. Both the LNAs and the antenna elements are contained inside the
cryogenic dewar, and are not visible behind the orange vacuum window.

xDAQ F-Engine evolved from the xRTB F-Engine and includes the additional capability of

allowing the user to choose between three different FFT lengths: 256, 512 and 1024. This

frequency channelized data is sent to a data reduction subsystem that selects subsets of the

full frequency spectrum and/or subsets of the 64 inputs. Next, the data is send to a UDP

packetizer and 10GbE transceiver that transfers data to the ROACH control PC, through

a 20 port 10 GbE network switch, to be written to disk. The data reduction frequency

and input sub-selection is used to reduce the output data load so that 1) the 10 GbE over
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which this data travels to the computer is not overloaded and 2) the RAID-0 configured hard

drives can write all of the data without missing any packets from the ROACH. Once the

UDP packets travel to the computer, a packet sniffing software (“Gulp”) is used to read the

data in each packet and place it into a large buffer (192 GB) in RAM and eventually write

that data onto disk. Post-processing of the data was performed by a MATLAB correlator

and post-correlation beamformer. An improved GPU based correlator was designed by this

author and is described in Appendix B.

4.2 Experiment Results

After the experiment was completed, the next months were spent post-processing

the data captured while in Arecibo. This post-processing included generating beamformer

weights from the calibration grids and using these beamformer weights to generate the final

data products.

4.2.1 Data Verification

While processing the data for this experiment, it became clear that there were some

problems with the experiment. One of the problems caused some antenna power levels

recorded by the xDAQ to be much higher than was thought possible. While the cause of

this problem is still yet to be discovered, this “power bloom” resulted in bit overflow within

the xDAQ.

During paketization, the xDAQ reduces the dynamic range of the recorded data by

selecting an 8-bit window from the 18-bit F-Engine output. This data window is chosen by

the user and is prone to user error causing overflow within this smaller window. There is

no overflow detection logic within the xDAQ, so the recorded data needs to be checked to

ensure there was no overflow during an observation.

Signals received from astronomical sources follow a Gaussian probability density func-

tion (pdf). We proposed that the Gaussian pdf of the recorded should ‘fit’ within the 8-bit

window selected to ensure that the xDAQ did not overflow during packetization. For our

case, we say a Gaussian pdf fits within the 8-bit window if the standard deviation σ is such

that 4σ is less than the maximum value that can be represented in the 8-bit window (given
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by 2nbits−1 − 1 where nbits is the number of bits used to represent values). The overflow test

for the 8-bit window used by the xDAQ is

4σ < 28−1 − 1 (4.1)

σ <
127

4
.

For such a pdf, there is the possibility that some of the data will overflow, but this small

amount of overflow (< .1%) was deemed tolerable.

Checking for this overflow is fairly easy if done visually, as shown in Figure 4.2. If

the underlying Gaussian distribution of the recorded data is such that there is significant

overflow, the pdf of the recorded data no longer looks Gaussian. As values overflow, the tails

of the Gaussian pdf get folded back into the 8-bit window, which results in an increase in

the standard deviation. Initially, overflow was detected by visually checking the histogram

of recorded data. Because we recorded so much data, it was not feasible to verify all of the

data visually.

To verify all of the recorded data, this author wrote a program that investigated the

distribution of the complex data recorded during observation. To determine if a data set

suffered from overflow, the standard deviation of that set was estimated. If equation 4.1 did

not hold for the estimated standard deviation, the data were declared to have been corrupted

by overflow. These data sets were flagged as corrupted by the data verification program and

were unused in any analysis of the experiment.

4.2.2 PAF Sensitivity

The sensitivity of a PAF can be calculated by observing a source with flux density

F s in units of Janksy (Jy) by

Ae

Tsys

=
2kb

10−26F s
SNR =

2kb
10−26F s

whRsw

whRnw
, (4.2)

where Ae is the effective dish area using beamformer weights w, Tsys is the beam equivalent

noise temperature, and kb is Boltzmann’s constant [32]. In order to characterize the sensi-
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Figure 4.2: This figure shows the effect of bit overflow on Gaussian distributed data. The
blue line shows the normalized histogram of Gaussian data that was generated with a standard
deviation σ. This data was then subject to overflow by reducing each value to only 8 bits and
the histogram of the result is shown in red. As fewer standard deviations fit within the 8-bit
range of [-128,127) shown by the vertical black lines, there is more overflow. This overflow
tends to raise the tails of the Gaussian so that the resulting distribution looks less Gaussian
and more uniform.

tivity of the PAF, accurate estimates of Rs,i and Rn are required. These were generated

after correlating the data from each of the uncorrupted calibration grids. Of the eight total

uncorrupted calibration grids, there were six “fine” grids, which consisted of a 15 by 15

square grid of 221 pointings separated by 48 arcseconds in both azimuth and elevation, and

two “superfine” grids, which consisted of a 31 by 31 square grid of 961 pointings separated

by 25 arcseconds in both directions. One of the fine sensitivity maps is shown in Figure 4.3.

Each pixel of the sensitivity map was calculated by using the beamformer weights for each

pointing in the calibration grid in equation 4.2. These sensitivity maps show that there are

a number of poor sensitivity elements. These poor sensitivity elements were primarily due

LNAs that failed as the cryogenic dewer was depressurized. Ignoring these failed elements,
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Figure 4.3: A 15x15 sensitivity grid generated using the 10.34 Jy source J2123+250. Ideally,
the sensitivity should be constant across the FOV, but this image shows several regions (in
green) with reduced sensitivity. This reduced sensitivity is due to LNAs that failed during the
experiment.

the PAF has a sensitivity of 740 m2/K, which corresponds to a Tsys of 53.6 K [41]. This

sensitivity is between that of the ALFA cluster 7-horn feed used at Arecibo and the ASKAP

188 elemant PAF which have sensitivities of 30 K and 63 K respectivly [69] [20]. These

results are encouraging and show that building large format cryo-PAF camera instruments

for large radio telescopes is feasible [26].

4.2.3 M87 Mosaic Image

During the Arecibo experiment, a 5 by 5 grid around the galaxy known as M87 was

acquired using the xDAQ. The spacing between each pointing was 7.5 arcmin. In order

to form an image of the galaxy, the grid was subjected to a post-processing beamformer

designed using one of the superfine calibration grid with a spacing of about 28 arcseconds.

Applying these beamformers produced a 31 by 31 pixel radio camera image surrounding each

of the 25 pointings within the M87 grid. As the spacing between the 5 by 5 grid pointings

was less than the size of the 31 by 31 pixel image around each pointing, there was some

overlap between adjacent pointings. For any pixels that overlapped others, the average pixel
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intensity was used in the final mosaic image. Some of the overlapping areas can be seen in

the resulting image as four squares surrounding the central peak. The pixel intensities were

then normalized across the full mosaic so that the maximum intensity pixel corresponds to

the known flux density of the galaxy, 10.5 Jy [70].

The resulting radio camera mosaic image is shown in Figure 4.4(a). If we compare

this image with an image produced using the VLA, we can see that the two images share

some similarities. This is encouraging and shows that radio camera imaging using the Cornell

PAF and BYU back-end can produce a reasonable image. The known dimensions of M87 are

8.3 by 6.6 arcmin. Using this mosaic image to calculate the major and minor diameters of

M87 gives 7.5 arcmin by 6.5 arcmin respectively. The discrepancy between this estimate and

the true dimensions of M87 is probably due to the relatively large beamwidth of the Conell

PAF (about 3 arcmin) which results is poor spatial resolution. The failed elements of the

PAF also had an effect on the mosaic image. This can be seen most clearly just below the

central peak. There is a small cutout of the galaxy that corresponds with the location of one

of the failed elements. The overlapping of pixels was able to reduce the effect of some of the

failed elements since the overlapped pixels intensity was calculated using beams elements in

another region of the PAF. The area directly below the central peak was not overlapped, so

the pixel intensities there are based off of beams formed primarily using a failed element.

4.3 Conclusions

The Arecibo experiment gave both Cornell and BYU an opportunity to test their

systems and evaluate the performance of these systems outside of the lab. While there were

some problems with the Cornell PAF, it appears that the BYU receiver/downconverters

and the xDAQ performed well. This is an encouraging outcome in that it showed that a

scientifically viable PAF digital back-end system can be implemented on a ROACH-based

hardware platform.

These preliminary results of the Cornell PAF have led to further collaboration between

BYU and Cornell. We are currently engaged in a design effort for an 80 element dual-pol

PAF (called AO40) for Arecibo. This new PAF will be accompanied by a 40 beam real-time

beamformer.
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(a) Mosaic image of M87 (b) Reference image of M87

Figure 4.4: The mosaic image of M87 generated from data gather during the Arecibo exper-
iment is shown in (a). A comparison image of M87 at L-Band is shown in (b). Image courtesy
of NASA/IPAC Extra-galactic Database.
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Chapter 5

Study of Weak-Source Detection in the Presence of RFI

5.1 Introduction

Detecting a signal in radio astronomy is not always an easy thing to do. In terms

of mean power, the signals we observe can be well below the noise floor of the telescope’s

electronics or the noise and interference filled environment surrounding the signal of interest.

This results in a “Princess and the Pea” like scenario: we want to detect a signal that is

buried underneath noise and interference which we often avoid. An approach to mitigating

the RFI problem was discussed in Section 2.3.1.

This chapter explores what happens to the detection process in the presence of RFI,

both with and without active spatial filtering mitigation methods. We will first discuss the

two major motivations for this study. A description of the experiment will we laid out along

with experimental results and analysis. Finally, we will draw some conclusions that will be

beneficial to radio astronomers.

5.2 Motivation

Suppose one wishes to observe a astronomical source using a PAF radio telescope.

We orient the dish so that the SOI is in the boresight direction for one of its beams (i.e.

for the central beam, the dish points directly at the source). The telescope dish will focus

the energy received from this source onto the PAF, however, each element will not receive

the same amount of energy from the SOI. The energy will be distributed across the array

in what is known as an Airy pattern due to diffraction. A maximum-SNR beamformr will

weight the elements near the center of this pattern more strongly, while diminishing the

contribution from the outer elements that do not receive the SOI as strongly. In contrast,

the energy from RFI sources further away from boresight will not be focused and will spread
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out across the array. If we apply a projection matrix to cancel this RFI, the weights for

elements further away from the center of the SOI Airy pattern may be adjusted to have

higher amplitude weights, which could increase their contribution to the total noise level seen

in the beamformer output. Noise from elements which were previously de-weighted in the

beamformer is now added in with higher weighting. This would lead to a reduction in SNR,

which is undesirable. In fact, any projection matrix applied to maximum-SNR beamformer

weights must result in a reduction of SNR (neglecting RFI and considering thermal noise

only) since there is only one solution to the quadratic maximization of equation (2.9).

For weak source observations, it is important to be able to characterize the system

noise temperature Tsys of radio telescope and receivers (see section 2.3.1). As shown in

equation (2.18), the system temperature depends on the beamformer weights. If we apply a

subspace projection matrix to the weights in order to reduce RFI, the system temperature

will also be affected. Many RFI sources are not stationary, which means the projection

matrix used to cancel that RFI must change with time to be effective. As the projection

changes, the effect that that projection will have on the system temperature can also change.

This may leads to a time-varying Tsys which can reduce the overall sensitivity of our telescope

as discussed in section 2.3.1.

5.3 Description of the Experiment

This experiment was performed by first creating a PAF radio astronomy observa-

tion simulation. This simulation includes tracking a weak SOI through sidereal motion

while a single strong moving RFI source passes through the beam’s sidelobe pattern. The

RFI sources used throughout the simulations were all members of the GPS constellation

of satellites. Real-time beamforming and post-correlation beamforming along with oblique

projection are used to form an RFI mitigating beam with main lobe focused on the SOI and

spatial nulling on the satellite RFI. Different long-term integration (LTI) lengths were used,

varying from 0.5 seconds up to 7200 seconds. Spectrograms (using Welch’s method [71]) of

the processed beamformer output data are visually inspected to determine what integration

length allows the weak SOI to be detected. Other detection statistics were used to infer the

behavior of RFI mitigation techniques in other situations.
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5.3.1 Green Bank 20-Meter Telescope

The Green Bank 20-meter telescope was built in 1994 and was a part of geodetic

VLBI experiments until its retirement in 2000. Since then, it has been used, among other

things, for PAF and RFI mitigation testing by BYU [27] [72]. This experiment simulated

radio astronomy observations using this telescope. Specifications for this telescope are given

in Table 5.1.

Table 5.1: Green Bank 20-meter telescope specifications

Reflector Diameter 20 meters
F/D ratio 0.43
Slew Speed 2 degrees per second

Surface Accuracy 0.8 mm rms
Location 38 26’12.661” N

79 49’31.865” W

5.3.2 Simulation Model

In order to simulate a true-to-life observation, several factors were included in this

simulation, such as the motion and flux density of both the SOI and RFI, the gain of the

reflector and feed, and the details of the receiver system.

Signal and Interference

In order to track SOI and RFI sources, their on-sky locations must be known precisely

as a function of time. This information was gathered from a software package (XEphem)

that provides ephemeris for various stellar objects and artificial satellites [73]. XEphem uses

two-line element (TLE) sets, which provide position and velocity of object orbiting the Earth,

to determine the location of objects at any given time. The simulations presented here cover

the two-hour window from Julian Date (JD) 2457134.88094 to 2457134.96428 (Coordinated

Universal Time (UTC) 2015-04-22 9:09:33 to 2015-04-22 11:09:33).
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The signal of interest for this study was modeled after the radio galaxy Cygnus A.

The location of the SOI coincides with the star Sadr (Bayer designation γ Cyg) and the

flux density of the SOI was arbitrarily set so that the SNR would be about -27 dB at the

array. There were six RFI sources, although each observation only included one RFI source

at a time. These satellites ate within the GPS constellation and include PRN 05, 13, 15,

21, 24, and 26. This simulation focused on a 10 kHz bandwidth centered at 1.57542 GHz

(the center of the L1 civilian band for GPS). These satellites use a direct Pseudo Noise (PN)

coded sequence spread spectrum modulated signal that appears temporarily white across the

single beamformer channel bandwidth studied. The sidereal revolution period of the GPS

satellites is roughly half a sidereal day, meaning that these satellites move about twice as

far on the sky as the SOI during an observation. Figure 5.1 shows a screenshot of XEphem

with the tracked GPS satellites and Sadr. Each tracked source position was updated every

0.1 seconds over the full 7200 second (2 hour) observation.

For this simulation, the interference is modeled as broadband white Gaussian noise,

which is consistent with the modulation parameters and the narrowband beamformer ar-

chitecture.. The power received from the interference source is modeled as a time-varying

random process with instantaneous power level set by low-pass filtering white Gaussian

noise. The signal of interest is modeled as a narrow-band Gaussian random process source,

with a 3 dB pass-band of 2 kHz to 3 kHz. By focusing on only a narrow-band signal of

interest, we can perform on-off subtraction with only a single dish pointing (as discussed in

section 2.3). The signal-to-noise (SNR) ratio for all observations was set to be -27 dB. The

interference-to-noise (INR) ratio varied from 0 dB to 30 dB.

Reflector and feed model

The telescope reflector is modeled as a 20-meter parabolic dish. The feed used is a 19-

element single-polarization dipole PAF. A PAF model created by Karl Warnick generates the

complex steering vectors (vs,vi from equation (2.11)) needed to corretly model the recieved

signal. The model includes details of the PAF, reflector, and receiver such as element spacing,

mutual coupling, polarization, bandwidth, reflector size, focal length, and spillover, sky and

LNA noise. See Figure 5.2 for a typical maximum-SNR beampattern for this dish and feed.
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Figure 5.1: This screenshot of the XEphem program shows the tracked locations of the
star Sadr (cyan, center) and several GPS satellites over a two-hour period starting at JD
2457134.88094. The yellow cross marks the locatino of the National Radio Astronomy Obser-
vatory in Green Bank, West Virginia.

Receiver system details

Using the array response vectors generated by the PAF model, a received signal vector

x[n] can be produced. This complex vector is created by generating complex random voltages

for the SOI and RFI, scaling those voltage by the appropriate array steering vector vs or

vi, and adding another complex random voltage that represents the noise seen by the array

(including LNA, spillover, and sky noise). Since the received signals represent samples of a

random process, 24 Monte Carlo trials were run and averaged for each simulated observation.

The received signal is sampled at a rate of 10 kHz and integrated for 0.5 seconds. A 10 kHz
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Figure 5.2: Using the Green Bank 20-meter telescope with a 19-element PAF, maximum-SNR
beamforming produces this beampattern as a function of zenith angle

processing bandwidth is representative for a finely channelized narroband beamformer used

in HI observations. This short-term integration (STI) length is the standard STI length of

the Focal L-Band Array for the Green Bank Telescope (FLAG) correlator, currently being

developed by NRAO/BYU/WVU. Recall that the SOI and RFI sources have 0.1 second

position updates, which leads to some amount of “subspace smearing” as the sources move

during each half-second STI. While the instantaneous interference subspace is rank-one, time

averaging during motion produces a higher rank matrix, which requires more eigenvectors

to span the interference subspace. This effect was dubbed subspace smearing in [38].

5.3.3 Signal Processing

During each observation, a number of signal processing steps take place. In order,

these are:

• Generate the received signal x[n] for each 0.1 second position update (we will call these

very short time integrations (VSTIs)).
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• Perform an array covariance estimate for each VSTI and save both the time series x[n]

and the correlation.

• Average VSTI correlations into a 0.5 second STI correlation and concatenate the VSTI

time series into an STI time series.

• For each STI, apply an oblique projection to both the time series data and correlated

data.

• Apply beamformer weights to the time series data and generate a power spectral density

(PSD) estimate using Welch’s method [71].

• Integrate the resulting averaged periodograms and the projected correlations for various

LTI lengths.

• Apply a post-correlation beamformer to the integrated correlated data.

• Calculate figures of merit, including Tsys, Tsys,rfi, Tsys,noise and the variance of the PSD

estimate.

5.4 Experiment Results and Analysis

The results for this experiment will be discussed in three sections. First, the effect

that subspace projection has on beamformer weights and Tsys will be considered. Next we

will discuss the stability of the radio telescope while applying subspace projection to the

received signals. Finally, detecting a narrowband signal masked by RFI will be discussed.

5.4.1 Effect of Subspace Projection on Beamformer Weights

Before the observation simulations were performed, we explored the question as to how

much affect RFI mitigation would have on the beamformer weights and Tsys. Figure 5.3(a)

compares beamformer weights for RFI from various arrival angles to the beamformer weights

before subspace projection. Figure 5.3(b) shows the system temperature after subspace

projection for RFI from various angles.

The effect that subspace projection has on the gross scale of beamformer weights

seems to be fairly minimal. The thought that the outer elements could see a dramatic
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Figure 5.3: The effect of RFI mitigation on beamformer weights and system temperature
for an interference source arriving from varying zenith angles is shown in these figures. In (a),
the beamformer weights for many arrival angles are overlaid. This shows that there is some
adjustment to the weights, with a dramatic change only happening for RFI sources within the
FOV. In (b), the system temperature also shows some variation with arrival angle, but this
increase is only substantial within the FOV.

increase in weight magnitude seems to be incorrect for most RFI arrival angles. The outer

elements do see some adjustment to their weights, but that change is relatively small and

spread across all of the PAF elements. As RFI typically is spread across the PAF, instead

of being focused to a single point, this small effect is encouraging since there is not a major

amplification of outer ring elements which could increase the noise substantially. However,

as the RFI moves into the FOV, energy received by the central element is dominated by

RFI. By placing a spatial null on the RFI, the weight for the central element is reduced.

This reduction in the central element forces outer-ring element weights to be increased, seen

as the widely varying red dashed lines of Figure 5.3(a). This leads to the noise amplification

effect hypothesized, but only for RFI sources in the FOV.

Subspace projection also causes a change in the system temperature, and shown in

Figure 5.3(b). For RFI arriving from directions away from boresight, this change is relatively

small (this simulation shows a change of less than 1 K). However, as the interference gets into

to the PAF FOV, the effect is dramatic (the central peak of Figure 5.3(b) extends upwards
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to over 160 K). In addition to a very large increase in Tsys, any attempt to cancel an RFI

source within the FOV could lead to cancellation of the SOI.

The performance metrics described in section 2.2.6 were calculated for each observa-

tion. The system temperature Tsys, including RFI contributions, before and after projection

was estimated for each 0.5 second STI. This is shown in Figure 5.4(a). Figure 5.4(b) shows

the contribution to Tsys from residual RFI and the perturbation of the noise field, Tsys,rfi and

Tsys,noise respectively.

Figure 5.4(a) shows that without any attempt at RFI mitigation, the system temper-

ature increased by 25-30 dB during this observation. In addition to this large increase, the

system temperature varies dramatically with time. This time variation impedes our ability

to reduce sample estimation error by integrating over longer periods of time. However, it

may still be possible to get a detection without mitigation for some RFI power levels, as

will be shown in section 5.4.3. If we apply subspace projection using an oblique projection

during our observation, the resulting Tsys is much lower and is comparable to the no RFI

Tsys of 40 K shown in Figure 5.3(b). However, there is some residual power level variation

after subspace projection which will have an effect of the signals we can observe.

The increase in system temperature due to residual RFI was generally small (< 1K)

for the simulated observations. This level was dependent on the physical geometry of the

observation: observations in which the RFI source moved closer to the SOI resulted in higher

levels of residual RFI when the two sources were closer together. This can be seen in Figure

5.5 which shows Tsys,rfi for an observation that begins with the SOI and RFI separated by

2◦. As the RFI moves away from the SOI, the residual RFI is reduced. However, Tsys,noise

does not seem to be as dependent on the relative positions of the SOI and RFI.

5.4.2 Radiometer Stability in the Presense of RFI

To determine the stability of the instrument over long observations during RFI can-

celing, the spectral noise power sample estimate of standard deviation was calculated for

varying LTI lengths. Figure 5.6 shows this standard deviation as a function of integration

time for observations without RFI, with RFI but without any RFI mitigation, and with RFI

and an oblique subspace projection. Recall from 2.3.1 that regions of these curves with a
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Figure 5.4: For an observation with GPS satellite PRN5 as an interference source, the effect
of RFI mitigation is substantial. 5.4(a) shows the system temperature being reduced from
levels exceeding 10000 K down to about 40 K. 5.4(b) shows the figures of merit Tsys,rfi and
Tsys,noise. The residual RFI is responsible for an increse in Tsys of less than 0.6 K while the
noise floor varies by about 1 K.
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Figure 5.5: For the GPS satellite PRN13 as an interference source, the residual RFI is less
than 0.15 K and decreases as the satellite travels further away from the SOI.

slope of -0.5 are dominated by Gaussian thermal noise [59] [60], whose variance can be re-

duced by integration (this corresponds to the first term in 2.24). As the slope of the standard

deviation curve becomes less negative, our ability to reduce estimation error by integration

is reduced as the second term of 2.24) begins to dominate.

While Figure 5.6 gives a comparison between all of the observation scenarios, it is

difficult to visually determine the slope of the standard deviation from this figure. To aid

in determining how the estimated standard deviation evolves with time, Figure 5.7 shows

three of the standard deviation curves from Figure 5.6. These curves have had a piecewise

linear curve fit applied to them to estimate the local slopes. Each curve was split by hand

into segments, and a line was fit to each segment. The segments boundaries (shown by the

green vertical lines) were chosen manually to “optimize” the linear fit within that segment,

which means the segments are not always the same length or in the same location. The

linear fit equation for each segment is given in the bottom left corner of each plot. Notice

that the slope for most of these piecewise segments is less than zero, which suggest that

we will continue to see improvement with integration for the no RFI and oblique projection

cases. However, for the observation with no RFI mitigation, integration beyond about 2
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Figure 5.6: The sample estimated standard deviation of the noise power provides a measure
of the radiometer’s stability. For longer integration times with no RFI, this variation continues
to decrease. If RFI is present, the slope is very shallow suggesting an increased difficulty in
detecting weak sources. RFI mitigation brings the variation closer to the no RFI case which
will reduce the integration time needed to detect a weak source.

minutes will not reduce the standard deviation as the slope is no longer less than zero. This

figure also shows that there are two very clear inflection points in both the no mitigation and

oblique projection curves. These coincide with the end of the first peak and the beginning of

the second peak in Tsys shown in Figure 5.4(a). Once we begin to integrate the time samples

with a lower system temperature between these two peaks, the standard deviation reduces

more quickly, producing a more negative slope. When we begin to integrate the second peak,

the standard deviation begins to level off and does not reduce as quickly.

5.4.3 Narrow-Band Weak Source Detection

Finally, to determine if we can detect the SOI, power spectral estimates are given

in Figures 5.8 - 5.10. We declare a detection if the variance of the noise only frequency

band is less than the power within the SOI frequency band. The dashed lines show the 5σ
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Figure 5.7: In (c), the standard deviation continues to decrese with a slope of -0.5 for the
full observation as expected. In (b) and (a), the slope flattens near the end of the observation
when gain variation begin to dominate the radiometer equation.

detection threshold. To declare a detection of the weak source, the signal power within the

SOI passband of 2-3 kHz must be greater than this detection threshold.

For the observation periodograms shown in Figures 5.8 - 5.10, the no RFI cases (black

lines) provide a detection in about 300 seconds. For the oblique projection cases (red lines),

we get a detection after some extra integration (between 300 and 1800 seconds depending on

interference strength). With no mitigation (blue lines), we do see a detection in the weaker

RFI cases, but not in the strong RFI case.

In section 5.4.2, we saw that the standard deviation reduced most quickly for the case

with no RFI, and most slowly for the case with RFI, but without any RFI mitigation. Figure

5.10 shows that a detection is made with the least integration for the case without any RFI.
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Figure 5.8: Averaged periodograms for varying LTI lengths and an INR of 0 dB. These show that a weak source detection can be
made in the presence of a weak source of interference even with no RFI mitigation.
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Figure 5.9: Averaged periodograms for varying LTI lengths and an INR of 15 dB. Like the case with an INR of 0 dB, a detection
is made for all three observation scenarios, although it takes some extra integration to achieve a detection.
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Figure 5.10: Averaged periodograms for varying LTI lengths and an INR of 30 dB. In this case, a detection is made with oblique
proejction after 1800 seconds of integration. Without mitigation, there is no detection.
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With RFI present, and using an oblique projection to cancel that RFI, a detection is made

after a some amount of extra integration. Without using any RFI mitigation techniques, the

estimated noise standard deviation does not reduce sufficiently to allow a detection for the

strongest source of interference.

5.5 Recommendations

We will now provide some recommendations for astronomers attempting to make

weak-source detections in the presence of RFI.

First, it is critical to know the strength of the interference. As discussed in [40], if the

INR is small it is possible to inadvertently apply a projection which cancels the SOI. A test

for detection of RFI of sufficient strength to provide a subspace estimate is given in [40].

Another concern involves the location of the RFI. As previously discussed, if the RFI

is very near to the SOI, a subspace projection can place a spatial null on or near the SOI.

To detect this situation, the angle between the two subspaces (that of the SOI and the RFI)

can be evaluated. This angle is given by

Θ = cos−1

( 〈ui,w〉
||ui||||w||

)

, (5.1)

where ui is the eigenvector of R̂ corresponding to the estimated interference subspace and

w is the vector of beamformer coefficients. This can be calculated at the same time the

oblique projection correction factor is being calculated. This angle should be close to 90◦.

For the simulations discussed in this chapter, this angle was between 75◦and 90◦. As this

angle gets further away from 90◦, the astronomer should consider excising the corresponding

time series data, so that portion of the observation is ignored during which the signal is in

danger of being projected out along with the RFI.

Secondly, the stability of the observation should be monitored in real-time. To do this,

a ‘strip-chart” that records the noise variance as a function of time should be used (see [74]

for an algorithm to estimate a running variance without arithmetical error). This will allow

the astronomer to understand the effect of integration on the observation. If the variance

does not continue to decrease with integration time, a weak-source detection will be more
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difficult. If this strip chart shows an increasing variance, it is very possible a weak-source

detection will not be achievable. In this case, the astronomer should consider stopping the

observation and attempting again when the RFI environment is more well behaved.

5.6 Conclusions

In order to test the effect of RFI mitigation using subspace projection on weak source

observations, we designed a simulation that would mimic a weak source with RFI scenario

using a 19-element PAF mounted on the Green Bank 20-meter telescope. There are three

principal conclusions that can be drawn from these simulations. First, while subspace pro-

jection does effect the beamformer weights, this does not generally cause a dramatic increase

in the noise floor. Second, the change in Tsys due to subspace projection is primarily due

to residual RFI that is not fully canceled. Finally, Tsys becomes time varying because the

subspace projection matrix varies with time. This leads to a reduction in long-term stability

of the instrument. In some cases, this pattern rumble is not substantial enough to negate the

benefits of integration. The results of these simulations have led to two recommendations

for astronomers. First, the angle between the interference and signal subspaces should be

watched during an observation. If this angle is small, subspace projection can place a null

on the SOI. Using data gathered in this situation should be avoided. Second, the stability

of the observation should be tracked as well. If the stability is decreasing substantially, the

astronomer should know that a detection will become much more difficult, and may not be

possible in the current RFI environment.
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Chapter 6

Conclusions and Future Work

In this chapter we will summarize the results of the work presented in this thesis and

discuss some areas that should be researched further.

6.1 Conclusions

Phased-array feed radio astronomy shows a great deal of promise, but comes with the

price of increased signal processing complexity. A real-time digital beamformer is presented

in this thesis that utilizes FPGA hardware to perform much of this required signal processing.

This beamformer, and the hardware platform used, reduce both the time necessary to form

multiple beams and the disk space necessary to house that data, when compared to other

post-correlation beamforming systems (such as that used in the Arecibo experiment described

in Chapter 4). Additionally, the ROACH based system provides a much smaller physical

size when compared with previous BYU PAF back-ends.

A real-data experiment was conducted at the Arecibo Observatory. During this test,

another ROACH-based back-end was used to record the data received by a PAF designed by

Cornell. This data was later processed to first check its validity and to ensure that the data

did not suffer from overflow during recording. Using a histogram-based detection scheme, it

was found that nearly half of the data recorded during this experiment was unusable. Using

the data that remained, a mosaic radio-camera image was formed for the M87 galaxy.

Radio-frequency interference mitigation techniques have been shown to be very effec-

tive, but some side-effects have not been explored. A simulated observation in the presence

of RFI has shown that while there is some reduction in the radiometric stability using these

techniques, the benefits greatly outweigh the reduced stability. Signals that would other-

wise be masked completely by interference, even with substantial integration, are detectable
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using oblique projection, albeit with some extra integration when compared with a similar

observation with no RFI.

Subspace projection does add some time-variation in the system temperature, which

can lead to some strange effects, such as a signal that can be detected with some LTI length

can “disappear” and no longer be visible with a longer integration. Two techniques have

been proposed that address this issue. First, the real-time tracking of the vector angle

between the signal and interference subspace should be utilized. Second, the integration

stability measure (ISM) should also be monitored. If the stability shows signs of significant

deterioration, the observation should be stopped. While this does not ensure a detection, it

may salvage a detection that would otherwise be lost.

6.2 Future Work

The reserach presented in this thesis can be extended in a few different directions.

The real-time beamformer could be expanded to include more simultaneous beams. The

software control system used by the beamformer is also in need to optimization, which could

dramatically reduce the time needed to update beamformer weights. This optimization

would allow the real-time interference cancellation system to work on much finer timescales

than other similar systems currently in use. This is essential for RFI cancellation of a moving

source. The Arecibo experiment showed that there is still some development needed for the

x64 Data Acquisition System. Overflow is a major problem that should be addressed before

the system is used for other observations. The weak-source observation simulation only

covers a narrow range of the types of observations done by astronomers. Other situations

that need to be studied include broadband signals and RFI that is not spectrally white. Other

mitigation techniques also need to be studied, such as cross-subspace projection. Automated

controls that decide when to use RFI mitigation, when to continue or stop an integration, and

when to discard data should also be studied. Also, the results of the simulations presented

in this thesis should be verified by real-data experiments.
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Appendix A

xRTB Operation

A.1 Summary

The Beamformer captures beamformed data for up to 7 simultaneous beams. Using
the x64 ADC, the Beamformer can operate using up to 64 channels sampled at 50 MHz.
The beamformed data is saved to the host PC in a binary .mat file, and Matlab can be used
to view the data in real time or to review the data at a later time. The Beamformer can
also be used as part of a Real Time Interference Cancellation (RTIC) system. This system
requires multiple ROACH boards running simultaneously. This system uses the Beamformer
(one ROACH board) and the Real Time Correlator (two ROACH boards) as well as a couple
of Matlab functions that perform the subspace projection and display the data. The RTIC
system currently only functions with a single beam.

The control code for the Beamformer was written to minimize the number of function calls
to run the system. This minimalist operation is explained here. For more discussion of the
functions controlling the Beamformer, see Section A.9.

Note: In this document some code statements span multiple lines. For Python, the line
extend character is the backslash (‘\’). For Matlab, the line extend character is an ellipsis
(‘...’).

A.2 Beamformer Weight Calculations

Because there are a few different ways to collect correlation data, there are a number
of functions used to calculate beamformer weights. The correlation data will generally be
coming from a calibration grid generated by the DAQ system, so generating weights using
this system will be discussed first. A correlation matrix can also be generated by the F/X
Engine Although the F/X Engine is better suited for the RTIC system, a set of weights can
also be generated using its output. This will be discussed second.

Generating weights using the DAQ system

There are three Matlab functions that can be used to generate a set of weights using a
correlation matrix from the DAQ system: createBfCoeffFile_fromDAQ.m,
calcSteeringVectors_DAQ.m and createBfCoeffs_DAQ_fromGrid.m. The first is possibly
the simplest to use, but the next two were written to speed up the process when generating
weights from a calibration grid.
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Generating weights using the F/X Engine

To calculate weights from the F/X Engine, there are four functions:
createBfCoeffFile_fromh5c.m, createBfCoeffs_XENG_fromGrid.m,
calcSteeringVectors_XENG.m, and readhdf5c.m. Again, the first is the simplest and the
next two are for generating weights from a grid. The last file is a simple helper function
needed to parse the .h5c files generated from the F/X Engine output.

A.2.1 createBfCoeffFile fromDAQ.m

[w, w_vec] = createBfCoeffFile_fromDAQ( ...

R_o, R_n, R_nn, elemEnd, fileName)

w A 64x64 matrix containing the beamformer weights.
w vec A vector of length 4096 containing the reorganized beam-

former weights (see Section A.10.1).
R o Filename for the “on pointing” correlation matrix.
R n Filename for the “off pointing” correlation matrix.
R nn Filename for the local noise correlation matrix.
elemEnd Total number of elements.
fileName Filename for the output coefficient file. A .coe extension

will be added.

R o should be a string giving the filename for the “on pointing” correlation matrix. This
matrix should be 64x64x256 - 64 elements x 64 elements x 256 frequency channels.
If less than 64 elements were used, then this matrix should be organized so that all non-
zero elements are contiguous starting with index 1. For example, consider the 3x3 matrices
below. These correspond to some arbitrary 3 element correlation matrices, with only 2
non-zero elements (i.e. only two elements are connected to the DAQ). The first matrix is
organized correctly, with all non-zero elements being contiguous and starting at index 1.
The other two are organized incorrectly.





a1,1 a1,2 0
a2,1 a2,2 0
0 0 0









a1,1 0 a1,3
0 0 0
a3,1 0 a3,3









0 0 0
0 a2,2 a2,3
0 a3,2 a3,3





In addition to the organization of the correlation matrix, the .mat file containing the matrix
has some restrictions. When this function was written, the name of the correlation variable
was unknown; therefore, it was assumed that the .mat file would only contain a single vari-
able.

R n should be a string giving the filename for the “off pointing” correlation matrix. This
matrix should be 64x64x256 - 64 elements x 64 elements x 256 frequency channels. This file
has the same restrictions and assumptions as R o

R nn should be a string giving the filename for the local noise correlation matrix. This
matrix should be 64x64x256 - 64 elements x 64 elements x 256 frequency channels. This file
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has the same restrictions and assumptions as R o

elemEnd should be an integer value 1-64.

fileName should be a string giving the desired output coefficient filename. This will have a
.coe extension added to it.

A.2.2 calcSteeringVectors DAQ.m

[steer_vecs] = calcSteeringVectors_DAQ(file, nElem)

steer vecs An array of structs containing the steering vectors for each
grid pointing.

files Cell array containing the correlation files to use.
nElem Number of elements in the correlation files.

files should be a <arbitrary number of files>x2 cell array of strings. Each row in the array
contains the correlation filenames for the on and off pointing for each grid pointing. These
correlation files follow the same restrictions as above, with some additions. The correlation
matrix variable needs to be named corr in both the on and the off pointings. The “on
pointing” .mat file also needs to contain row and col variables giving the row and column
within the calibration grid.

nElem should be an integer value 1-64.

A.2.3 createBfCoeffs DAQ fromGrid.m

[w, w_vec, w_notScaled] = createBfCoeffs_DAQ_fromGrid( ...

steeringVecs, pointing, R_nn, nElem, fileName)

w A 64x64 matrix containing the beamformer weights.
w vec A vector of length 4096 containing the reorganized

beamformer weights (see Section A.10.1).
w notScaled A 64x64 matrix containing the beamformer weights.

These weights have not been scaled down to 8 bits
yet.

steeringVecs Cell array containing the correlation files to use.
pointing A row vector [x,y] containing the x and y coordinates

within the grid for this pointing.
R nn Filename for the local noise correlation matrix (.mat

file).
nElem Number of elements in the correlation files.
fileName Filename for the output coefficient file. A .coe exten-

sion will be added.

steeringVecs should be an array of structs as returned from calcSteeringVectors_DAQ.m.
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pointing should be a row vector containing the x and y coordinates within the grid that
corresponds to the desired grid pointing. The steering vector for this pointing will be used
to generate a set of beamformer weights.

R nn should be a string containing the filename of the local noise correlation matrix. This
file should be a .mat file, following the same rules as the other no signal correlation matrices.

nElem should be an integer 1-64.

fileName should be a string giving the desired output coefficient filename. This will have a
.coe extension added to it.

A.2.4 createBfCoeffFile fromh5c.m

[w, w_vec] = createBfCoeffFile_fromh5c( ...

R_o, R_n, R_nn, elemEnd, fileName)

w A 64x64 matrix containing the beamformer weights.
w vec A vector of length 4096 containing the reorganized beam-

former weights (see Section A.10.1).
R o Filename for the “on pointing” .h5c file.
R n Filename for the “off pointing” .h5c file.
R nn Filename for the local noise .h5c file.
elemEnd Total number of elements.
fileName Filename for the output coefficient file. A .coe extension

will be added.

R o should be a string containing the filename of the “on pointing” correlation .h5c file.
The F/X Engine will output a .h5 file. This file must be modified by the fix_med_corr.py
python function to parse and reorganize the data. From the .h5 file a .h5c file is created
that has all the data in the correct format so that the correlation matrix can be extracted.

R n hould be a string containing the filename of “off pointing” correlation .h5c file.

R nn hould be a string containing the filename of local noise correlation .h5c file.

elemEnd should be an integer 1-64

fileName should be a string giving the desired output coefficient filename. This will have a
.coe extension added to it.

A.2.5 createBfCoeffs XENG fromGrid.m

[w, w_vec] = createBfCoeffs_XENG_fromGrid( ...

steeringVecs, pointing, R_nn, nElem, fileName)
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w A 64x64 matrix containing the beamformer weights.
w vec A vector of length 4096 containing the reorganized beam-

former weights (see Section A.10.1).
steeringVecs Cell array containing the correlation files to use.
pointing A row vector [x,y] containing the x and y coordinates within

the grid for this pointing.
R nn Filename for the local noise correlation matrix (.h5c file).
nElem Number of elements in the correlation files.
fileName Filename for the output coefficient file. A .coe extension

will be added.

steeringVecs should be an array of structs as returned from
calcSteeringVectors_XENG.m.

pointing should be a row vector containing the x and y coordinates within the grid that
corresponds to the desired grid pointing. The steering vector for this pointing will be used
to generate a set of beamformer weights.

R nn should be a string containing the filename of the local noise correlation matrix. This
file should be a .h5c file.

nElem should be an integer 1-64.

fileName should be a string giving the desired output coefficient filename. This will have a
.coe extension added to it.

A.2.6 calcSteeringVectors XENG.m

[steer_vecs] = calcSteeringVectors_XENG(files)

files Cell array containing the correlation filenames.

file should be a <number of files>x4 cell array. (x,1) is the on pointing file, (x,2) is the off
pointing file, (x,3) and (x,4) are the row and column to which this on pointing corresponds.

A.2.7 readhdf5c.m

[corr] = readhdf5c(filename, chOut)

corr A 64x64xN array containing correlation matrices across N
frequency bins.

filename Filename of the .h5c file to parse.
chOut An integer used to determine how many frequency bins to

output.

filename should be a string containing the filename of the .h5c file to parse.
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chOut should be an integer. This is used to determine how many frequency bins will be
included in the output correlation matrix. If this value is 64, every 16th bin will be output,
starting with bin 9. If this value is anything else, all 1024 bins will be output.

A.3 ROACH Control via Python

The ROACH is controlled by the python file BeamformerCtrl.py. The main function
which is used to run the beamformer is runBeamformer(...). This function will load the
correct weights into the beamformers, create a directory to store data, write a log file, and
collect data for the specified amount of time.

Usage Example:

>> import BeamformerCtrl

>> roach = BeamformerCtrl.x64(‘roach3’)

>> allWeightFiles = [‘~/Files/weightFile1’, \
‘~/Files/weightFile2’, \
‘~/Files/weightFile3’]

>> roach.runBeamformer(allWeightFiles, ‘./newDirectory’, \
1, 0.5, 7)

This will program the roach with the current boffile, initialize a list of coefficient files,
then run the beamformers using the coefficients specified in the list of coefficient files. Data
will be gathered for 1 second using a 0.5 second integration time. Bits 7-10 of the FFT
output will be used as the input for the beamformers. A date stamp will be appended to
the end of ./newDirectory along with an integer indicating which run this is for that day
(i.e. ./newDirectory_2013_July_11_1 would be the first run on July 11 2013. Next would
be ./newDirectory_2013_July_11_2 and so on).

A.3.1 x64

BeamformerCtrl.x64 is the wrapper class for controlling x64 based ROACH builds.
The roach variable must be initialized before any functions can be called.

__init__(roach)

roach IP address for the ROACH board to be used

roach should be the IP address for the roach to be used. (CasperMain has had its
/etc/hosts file modified so that ‘roach3’ points to the IP address for one of our ROACH
boards).

A.3.2 runBeamformer

runBeamformer(allWeightFiles, dirName, duration, period, \
sliceIdx, noVerify=True)
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allWeightFiles A list of coefficient filenames.
dirName Path for the directory in which to save data.
duration Total length of time to run beamformer (seconds).
period Integration time (seconds).
sliceIdx LSB of FFT output to be used to the beamformer.
noVerify For future use.

allWeightFiles should be a list of strings containing the path for each coefficient file to use.
This list must contain 1-7 filenames. These paths should NOT contain the .coe extension.
The weight files themselves must have the .coe extension, but this is not to be included
in this list. The coefficient files used should have an associated .log file with the same
basename as the .coe file. This log file is created by the same Matlab function that creates
the .coe file.

dirName should be a string containing the path for the directory in which to save data.
This directory path will have a date stamp added along with an index corresponding to
which run this is for that date. For example if dirName was TEST, and this was the first time
this function was run today, a directory named TEST_2013_July_11_1 would be created.
If run again with the same dirName, a directory named TEST_2013_July_11_2 would be
created.

duration should be a value greater than 0. The function will run for the specified amount
of time. If you wish to stop the function prior, a simple ctrl+c will stop the function.

period should be a value greater than 0.01 OR -1. If -1, only one FFT will be accumulated
(this is mostly for testing purposes). This will be the integration time for the beamformers
(in seconds). If the integration length is too small, the data will not be able to be read
quickly enough, and this function will quit if an accumulation is missed.

sliceIdx must be an integer 0-7. This corresponds to the LSB of the FFT ouput to use for
the beamformer input. A 4 bit window is sliced off of the FFT output.

noVerify If True, the weights will not be read after being written (to verify that the proper
weights were written correctly). The current beamformer model does not support this veri-
fication, so noVerify will default to True.

A.4 Real Time Display via Matlab

The function BeamformerCtrl.x64.runBeamformer(..) continually saves data while
running. There are two Matlab functions that can be used to view this data. This can
be done while BeamformerCtrl.x64.runBeamformer(..) is running, or using previously
recorded data.
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A.4.1 plotBfData noAvg numBfs.m

[ ] = plotBfData_noAvg_numBfs(dirPath, fileSkip, accLen, ...

numBfs, removeBins)

dirPath Path for the directory containing beamformed data.
fileSkip Number of files to skip from beamformed output data.
accLen Integration time (seconds).
numBfs Number of beamformers to plot.
removeBins Number of bins to ignore from the ends of the spectrum.

dirPath should be a string containing the directory in which the beamformed data was
saved. This path will be given by runBeamformer(...) after it has finished initialization.
This path can also be set to a directory containing previously recorded data.

fileSkip should be a positive integer. This function has a refresh rate of about 0.25 seconds
(depending on the machine). If runBeamformer(...) has an accumulation length less then
0.25, then this function will not be able to display the beamformer output in real time. If
this is the case, fileSkip can be set so that a number of files are skipped between each refresh.
For example: if an accumulation length of 0.05 is set, using a fileSkip of 4 will plot every
5th file which will keep up with real time better. This function will output to the console
the elapsed time between each refresh. If the next data file has not been written yet, then
a waiting... message will be written. If that waiting message is being written often, you
can be sure that this plotting function is keeping up with the real time data coming out of
the beamformer.

accLen should be the same value that was used in runBeamformer(...)

numBfs should be an integer 1-7.

removeBins should be an integer 0-128. Because the bandwidth of the downconverter
boards is less than 25MHz, some of the beamformer weights near the edges of the spectrum
are artificially larger than they should be. These incorrect bins can be ignored in the display
by setting removeBins greater then zero. This number of bins will be zeroed out on both
ends of the spectrum. Default is 28; bins 1-28 and 228-256 will be set to zero when displayed.

A.4.2 plotBfData.m

[ ] = plotBFData(dirPath, numFiles, accLen, removeBins)

dirPath Path for the directory containing beamformed data.
numFiles Number of files to average from beamformed output data.
accLen Integration time (seconds).
removeBins Number of bins to ignore from the ends of the spectrum.
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dirPath should be a string containing the directory in which the beamformed data was
saved. This path will be given by runBeamformer(...) after it has finished initialization.
This path can also be set to a directory containing previously recorded data.

numFiles should be an integer greater than 0. This variable controls how many files are
averaged together when plotted. A smaller number updates more quickly, but can lead to
some lagging if the beamformer is saving data too quickly. It is difficult to give a good idea
of what this value should be, but with an accumulation length of 0.25 seconds, a numFiles
value of 2 works well. This function will output to the console the elapsed time between
each refresh. If the next data file has not been written yet, then a waiting... message will
be written. If that waiting message is being written often, you can be sure that this plotting
function is keeping up with the real time data coming out of the beamformer.

accLen should be the same value that was used in runBeamformer(...)

removeBins should be an integer 0-128. Because the bandwidth of the downconverter
boards is less than 25MHz, some of the beamformer weights near the edges of the spectrum
are artificially larger than they should be. These incorrect bins can be ignored in the display
by setting removeBins greater then zero. This number of bins will be zeroed out on both
ends of the spectrum. Default is 28; bins 1-28 and 228-256 will be set to zero when displayed.

A.5 Real Time Interference Cancellation Control Code

The Real Time Interference Cancellation (RTIC) system is a bit more complex then
the simple beamformer. The RTIC system requires 3 ROACH boards, 2 of which have the
x64 adc attached. One ROACH runs the beamformer, while the other two run the F/X En-
gine. The operation of the F/X Engine is not covered here, but Zhu Kai, a visiting engineer
from NAOC, left detailed notes on its operation.

There are three major pieces of code for the RTIC system: the RTIC calculations
handle all all of the subspace projection that cancels out interference; the python ROACH
control function handles all of the ROACH control signals and other I/O; and the Matlab
display functions handle the display of the beamformed data.

A.6 RTIC Calculations

The RTIC system starts with an initial set of beamformer weights that are constantly
modified to cancel out a major interference source. To do this, the F/X Engine needs to
be running and saving new .h5 files which contain the new correlation data. These .h5

files are parsed and converted to a .h5c file. Once the .h5c file is created, it is read and
used to create a new set of beamformer weights. These weights are then be loaded into the
beamformer.
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A.6.1 createBfCoeffs RTIC.m

[ ] = createBfCoeffs RTIC(w in, h5cDir, coeDir, ...

coeBaseName, nElem)

w in A 64x64 matrix containing the initial beamformer
weights.

h5cDir The directory where the .h5c files are being created.
coeDir The directory in which the new .coe files should be

saved.
coeBaseName The basename for the new .coe files.
nElem Number of elements to be used. Should be 32 for RTIC

system.

w in should be a 64x64 matrix which would be returned from most of the other
createBfCoeff functions.

h5cDir should be a string containing the path for the directory in which the new .h5c files
are being saved. This function will periodically check for a new .h5c file in this directory.
As soon as a new file is available, it will be used to make a new set of beamformer weights.

coeDir should be a string containing the path for the directory in which to save the new
coefficient files.

coeBaseName should be a string containing the basename for the new coefficient files. If
the desired filename is test.coe, the basename would be test. When a new coeffecient file
is created, an integer index is appended to the end of the basename which then has a .coe

extension added to the end. The integer index is used by the python RTIC control function.

nElem should be an integer 1-64.

A.7 RTIC ROACH Control via Python

The python portion of the RTIC system functions similarly to the standard beam-
former. The major difference is that the RTIC system periodically checks for a new set of
beamformer weights and uploads them to the ROACH as soon as thy are available.

A.7.1 runRTICBeamformer

runRTICBeamformer(allWeightFiles,dirName,coeDirName, \
coeBaseName, period, sliceIdx)
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allWeightFiles A list of coefficient filenames.
dirName The path for the directory in which to save data files.
coeDirName The path for the directory in which the new .coe files

are being written.
coeBaseName Basename of the new .coe files which are being writ-

ten.
period Integration time (seconds).
sliceIdx LSB of FFT output to be used to the beamformer.

allWeightFiles should be a list of strings containing the path for each coefficient file to
use. For the RTIC system, this list should only contain 1 filename. This path should NOT
contain the .coe extension. The weight files themselves must have the .coe extension, but
this is not to be included in this list. The coefficient files used should have an associated
.log file with the same basename as the .coe file. This log file is created by the same Matlab
function that created the .coe file.

dirName should be a string containing the path for the directory in which to save data.
This directory path will have a date stamp added along with an index corresponding to
which run this is for that date. For example if dirName was TEST, and this was the first time
this function was run today, a directory named TEST_2013_July_11_1 would be created.
If run again with the same dirName, a directory named TEST_2013_July_11_2 would be
created.

coeDirName should be a string containing the path for the directory in which to check for
new .coe files.

coeBaseName should be a string containing the basename of the new .coe files which
are being written. If the new files are names Weights_x.coe then the basename would be
Weights.

period should be a value greater than 0.01 OR -1. If -1, only one FFT will be accumulated
(this is mostly for testing purposes). This will be the integration time for the beamformers
(in seconds). If the integration length is too small, the data will not be able to be read
quickly enough, and this function will quit if an accumulation is missed.

sliceIdx must be an integer 0-7. This corresponds to the LSB of the FFT ouput to use for
the beamformer input. A 4 bit window is sliced off of the FFT output.

A.8 RTIC Real Time Display via Matlab

The function BeamformerCtrl.x64.runRTICBeamformer(..) saves the data from the
beamformers continually while it is running. The Matlab function to view this data is similar
to the other Matlab display functions, but they are not interchangeable. Like the other
display functions, this function can be used while the RTIC system is running, or it can be
used on previously recorded data.
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A.8.1 plotRTICData noAvg.m

function [ ] = plotRTICData noAvg(dirPath, fileSkip, ...

accLen, removeBins)

dirPath Path for the directory containing beamformed data.
fileSkip Number of files to skip from beamformed output data.
accLen Integration time (seconds).
removeBins Number of bins to ignore from the ends of the spectrum.

dirPath should be a string containing the directory in which the beamformed data was
saved. This path will be given by runRTICBeamformer(...) after it has finished initializa-
tion. This path can also be set to a directory containing previously recorded data.

fileSkip should be a positive integer. This function has a refresh rate of about 0.25 seconds
(depending on the machine). If runRTICBeamformer(...) has an accumulation length less
then ˜0.25, then this function will not be able to display the beamformer output in real
time. If this is the case, fileSkip can be set so that a number of files are skipped between
each refresh. For example: if an accumulation length of 0.05 is set, using a fileSkip of 4 will
plot every 5th file which will keep up with real time better. This function will output to the
console the elapsed time between each refresh. If the next data file has not been written yet,
then a waiting... message will be written. If that waiting message is being written often,
you can be sure that this plotting function is keeping up with the real time data coming out
of the beamformer.

accLen should be the same value that was used in runRTICBeamformer(...)

removeBins should be an integer 0-128. Because the bandwidth of the downconverter
boards is less than 25MHz, some of the beamformer weights near the edges of the spectrum
are artificially larger than they should be. These incorrect bins can be ignored in the display
by setting removeBins greater then zero. This number of bins will be zeroed out on both
ends of the spectrum. Default is 28; bins 1-28 and 228-256 will be set to zero when displayed.

A.9 Other Beamformer Operations

There are a number of functions that can be used to control many different beam-
former actions. Some of these are buried in the wrapper functions runBeamformer and
runRTICBeamformer, while others were written for testing/debugging purposes. This sec-
tion contains brief explanations for many of the functions contained in BeamformerCtrl.x64

class.

set bitstream(new bitstream)

A class variable (bitsream) contains the current boffile filename. This function updates this
variable without reprogramming the ROACH board.
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set new bitsream()

A class variable dict (bitstreams) contains a number of beamformer boffiles. Many of these
are still in the testing stages. This function will ask you to choose which bitstream to use
and reprograms the ROACH.

program roach()

Program the ROACH using the boffile currently contained in the class variable bitstream.

calibrate adc()

Run the ADC calibration script (previously adc_softcal.py).

get data(bram num=‘’, log = ‘’)

Plot the data from beamformer number <bram num>. To plot on a log scale, use <log>=
‘log’. <bram num> defaults to an empty string (for older beamformer models with only a
single beamformer). Data is returned.

get all data(bram num, log = ‘’)

Plot the data from multiple beamformers (controlled by <bram num>) on the same plot.
To plot on a log scale, use <log> = ‘log’. Data is not returned, only displayed on screen.

updateBFCoeffs(fileName, bf idx, bramName=‘coeff bram’, \
bramSize=2048, triggerReg=‘ctrl’)

Update the coefficients for a single beamformer. <fileName> is the path for the coefficient
file, and <bf idx> is the integer index corresponding to the beamformer to updata (1-7).

updateBFCoeffs no print(fileName, bf idx, bramName=‘coeff bram’,\
bramSize=2048, triggerReg=‘ctrl’)

Update the coefficients for a single beamformer with out printing anything to the console.
Uses the same definition as updateBFCoeffs.

set slice(idx)

Set the slice window for the FFT output. <idx> must be an integer 0-7.

set acc len(seconds)

Change the amount of time for each accumulation. Must be greater than 0.00002. Can be
set to -1 to turn off accumulation (i.e. beamformer output is not accumulated - each output
is saved to the final bram).

toggle bf input(value=‘00000000’)
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Toggle the beamformer input between the F-Engine and a specified value. <value> must be
a 32 bit hex string (with no leading ‘0x\’
test suite(numFileRuns, acclen, numBfs, getOutFiles=False)

Run a test to check that the outputs of the beamformers are correct. This function reads the
output of the beamformers and checks them against a known correct data set. A correct data
set is aquired by setting <getOutFiles> True. <numFileRuns> is an integer that controll
how many times each coefficient file is checked. <acclen> must match the acclen for the
known data set. <numBfs> is an integer 1-7.

read snaps(filename, bf idx,start, end)

Read the snap blocks in bf7_read_weights_2013_Jun_03_1331.bof. To trigger a read, a
coefficient file <filename> is written to a beamformer <bf idx> until it is known than the
weights were written incorrectly. <start> and <end> are the bounds on how many snap
addresses to display. Data is not returned, only printed to the terminal.

get bram contents(bram name, data width, address width)

Read a yellow block shared bram<bram name> of size<data width> and<address width>.
Data is returned.

save bram contents(bram name, data width, address width, filename)

Similar to get_bram_data(..) except data is saved to a file <filename> with a .brm exten-
sion.

check bf weights(bf idx, coe filename, \
save file=False, brm filename=‘bramFile’)

Verify the weights of the specified beamformer. Currently loaded beamformer weights can
be saved to a file: set <save file> to True and specify a <brm filename>.

read coeffs(bf idx)

Read the currently loaded coefficients in beamformer number <bf idx>. Data is returned.

check sync()

Check if the ADC chips are correctly synced. Pulse the sync signal if the chips are ready.

rerun cal()

Re-program and re-calibrate ROACH.

adc reset(self)

Send the ADC reset signal.

save output(outfile, outval)

Pickle a variable <outval> into a file <outfile>.

compare files(file1, file2, shallow=False)

Compare the contents of two files<file1><file2> using Lib.filecmp.py. See filecmp.__doc__
for more info.
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A.10 Beamformer Coeffecient Files

The coefficients used in the beamformers are read out of a coeffecient file with a .coe

extension. These files have a very specific organization and format. The correct way to
organize and format these files is explained here.

A.10.1 Coefficient File Organization

Like the ADC input ordering, the coefficient file has a confusing organization. The
organization comes from the need to present coefficients in the order that the ADC samples
data. Because not all inputs are sampled simultaneously, they are also not presented to the
beamformers simultaneously. The beamformers see samples from inputs 0, 1, 16, 17, 32, 33,
48, 49 at once, followed by 8, 9, 24, 25, 40, 41, 56, 57 and so on. The coeffecient file must be
organized so that all frequency bins for each set of eight inputs are presented before moving
on to the next set of eight inputs.

In addition to the input ordering, the beamformers have been designed to use a single weight
for four consecutive frequency bins. (This was done to meet timing constraints.) So, for the
64 input, 512 point FFT design, the coefficients can be organized into a 64 x 64 matrix.

For example, consider the matrix W

Wm,n =











w0,0 w0,1 · · · w1,n−1

w1,0 w1,1 · · · w2,n−1
...

...
. . .

...
wm−1,1 wm−1,2 · · · wm−1,n−1











where the m corresponds to each set of four frequency bins, and n corresponds to each input
port.

The coefficients should be reorganized into a single vector before being written to the coef-
ficient file. The correct organization of the coefficient vector w for the example matrix W is
as follows:
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w =

[w0,0 w0,1 w0,16 w1,17 w0,32 w0,33 w0,48 w0,49

w0,8 w0,9 w0,24 w0,25 w0,40 w0,41 w0,56 w0,57

w0,2 w0,3 w0,18 w1,19 w0,34 w0,35 w0,50 w0,51

w0,11 w0,12 w0,26 w0,27 w0,42 w0,43 w0,58 w0,59

w0,4 w0,5 w0,20 w1,21 w0,36 w0,37 w0,52 w0,53

w0,12 w0,13 w0,28 w1,29 w0,44 w0,45 w0,60 w0,61

w0,6 w0,7 w0,22 w1,23 w0,38 w0,39 w0,54 w1,55

w0,14 w0,15 w0,30 w1,31 w0,46 w1,47 w0,62 w1,63

w1,0 w1,1 w1,16 w2,17 w2,32 w2,33 w2,48 w2,49 · · ·
w63,14 w63,15 w63,30 w63,31 w63,46 w63,47 w63,62 w63,63]

This vector follows the input port organization explained in [41]

A.10.2 Coefficient File Format

Each line of the coefficient file contains two complex, 16 bit (8 real, 8 imaginary), coefficients
written as a two’s compliment hexadecimal number. Any hex designation (\x, #, 0h, etc.)
is left off. As stated, each line contains two coefficients. Referring back to the coefficient
vector w these will be consecutive values, i.e. w0,0 w0,1. The file is a simple text file with a
.coe extension.

As an example, consider the coefficients c1 = 0, c2 = 1, c3 = j and c4 = 1 + j.

Using these coefficients, the file would be as follows:

00000100

00010101

<empty line>

A.11 Beamformer Output

The beamformer output is fairly straightforward. The accumulated data is stored in
a yellow block shared bram as a 32 bit unsigned value. This is read and saved to a .mat file
(using scipy.io.savemat).Because of the way the bram read function works, the .mat file
must still be parsed by the Matlab display functions. The data also must be corrected for
the 8 bit scale value applied when the beamformer weights are generated. These scale values
are saved in the .log file for the beamformer weights.
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Appendix B

x64 GPU Correlator

B.1 Summary

The x64 GPU Correlator was written in an effort to speed up the time it takes to
correlate the data received using Richard Black’s x64 Data Acquisition System (DAQ). A
MATLAB correlator was written and used initially, but a single calibration grid could take
20+ hours to correlate. To reduce the compute time required to correlate the data gathered
from the DAQ, a new correlator was designed to take advantage of the parallelized nature
of a graphics processing unit (GPU).

B.2 Theory

Let x[n] be a discrete random process. Estimators for the mean, autocorrelation, and
autocovaraiance of x[n] are respectively defined as

µ̂x ≡ 1

N

N−1
∑

n=0

x[n]

R̂x ≡ 1

N

N−1
∑

n=0

x[n]xH [n]

Ĉx ≡ N

N − 1

[

R̂x − µ̂xµ̂
H
x

]

.

It can be shown that the following is an equivalent expression for Ĉx

Ĉx ≡
(

1

N − 1

N−1
∑

n=1

x[n]xH [n]

)

−
(

1

N − 1

N−1
∑

n=1

x[n]

)(

1

N − 1

N−1
∑

n=0

x[n]

)H

. (B.1)

Both the MATLAB and GPU correlator implement Equation B.1 to provide an estimate for
the covariance of the received signal.

B.3 Code

The code for the GPU correlator is straightforward and is contained in a single file,
x64correlator.cu, with 365 lines of code. Much of the code handles file and packet parsing,
while the meat of the code is in the five GPU kernals that perform the correlation calculations.
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Figure B.1: This figure shows how the correlation kernel is divided into a grid of blocks
and threads. The grid contains M × M blocks, each of which contains L threads. Each
block computes one entry for all frequency bins with each thread computing one entry for one
frequency bin.

These kernals implement the vector outer product, summation, subtraction, and division
operations required in Equation B.1.

Each file that comes from the DAQ is a collection of UDP packets crated by the DAQ.
To create this file, UDP packets are captured and written to disk using a program called
Gulp. Gulp will write it’s own small header to the top of the file, followed by the UDP
packets containing the frequency channelized data. When parsing the file for correlation,
the Gulp header and the UDP headers are ignored. The 8 byte DAQ header contains the
FFT length and the frequency bins and ADC inputs that are included in that packet. These
headers are all identical, so it is only necessary to read one. Once these parameters are
gathered, memory requirements can be calculated and data storage arrays can be initialized.

The packets are processed one at a time and the data is stored into a single array.
This array is copied over to the GPU device for correlation. This array is also added into
a running sum which will later be used to subtract the correlation of the mean from the
mean correlation. The GPU memory consists of a temporary correlation array, a running
sum correlation array, a temporary data array, and a running sum data array. Each of
these arrays is a two or three dimension matrix which has been flattened down to a single
dimension array. The data matrix is stored in row-major order indexed first by frequency
bin then by element. The correlation matrices are stored in row-major order indexed first
by frequency bin then by row and column.

The performance improvement comes from the parallalization of the computations
on the GPU. The correlation operation is fairly easy to parallelize as each entry in the
correlation matrix can be calculated independently. The grid size of the kernal launch
follows the dimensions of the output correlation matrix: MxMxL where M is the number
of ADC inputs used and L is the number of frequency bins (see Figure B.1). The kernal grid
is broken into MxM blocks, which are further broken down into L threads. Each thread
calculates a single entry in the correlation matrix for a single frequency bin; this calculation
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consists of only a complex multiply and add. Each packet’s correlation matrix is added to a
running sum, for later calculating the mean of the correlation.

Once all of the packets have been processed, each of the running sums is divided
by N − 1 to find the mean. The mean data is then correlated, and subtracted from the
mean correlation. The result is then saved to disk. A simple MATLAB script can then
be used to read in the data and rearrange it into a format that is more convenient for the
post-processing codes which had been used with the older MATLAB correlator.

B.4 Usage

To use the correlator, you need to first compile it using the Nvidia C compiler (vncc).
There are two required arguments to run the correlator: the input raw data filename and
the output correlation filename. The output filename does not need to be an existing file.

The correlator will create two files: one is a binary file with the filename you specify,
and the other is a text version of the binary file. The text file will take the filename you
specify and append a .txt extension. Both of these files have the same data order which
matches the ordering of the correlation array discussed previously.

There are a number of MATLAB scripts and functions to do the post processing for
the correlated data (including beamforming, sensitivity grids and imaging). To use these,
you may need to format the data from the GPU correlator to match the format of the
MATLAB correlator.

B.5 Performance

Although the MATLAB correlator can processes up to 12 files simultaneously, it is
still very slow. It will usually take 1000 or more seconds to process each file. The GPU
correlator will process each file in 60 seconds or less. This was tested by comparing the time
it took to correlate a 15 by 15 beamformer calibration grid. The GPU correlator was able to
correlate all 50 frequency channels of the full grid 4.5 hours. The MATLAB correlator was
able to correlate only a single frequency channel of the full grid in 19.5 hours.
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